Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Climate change and the global distribution of wealth

Abstract

Wealth inequality dynamics influence economic and social outcomes and stability. While climate change and climate policies affect both physical capital and financial assets, their impacts on aggregate wealth and its distribution remain underexplored. Preliminary calculations suggest that climate change and climate investments could have substantial effects on wealth inequality, although the direction of these changes remains uncertain. This Perspective builds on numerical insights, outlines a conceptual framework and proposes a research agenda aimed at advancing the understanding of global wealth inequality under climate change, highlighting the need for interdisciplinary collaboration on the issue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Projections of global wealth inequality under alternative climate investment scenarios.
Fig. 2: The impacts of climate change on income and wealth.
Fig. 3: The effects of climate change on the distribution of private wealth.

Similar content being viewed by others

Data availability

A detailed description of the underlying data sources of Fig. 1 is available in ref. 28.

Code availability

The code for Figs. 1 and 3 is available from the corresponding author upon request.

References

  1. Zucman, G. Global wealth inequality. Annu. Rev. Econ. 11, 109–138 (2019). This article provides estimates of global wealth inequality among individuals.

    Article  Google Scholar 

  2. Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2022 (Harvard Univ. Press, 2022).

  3. Saez, E. & Zucman, G. Wealth inequality in the United States since 1913: evidence from capitalized income tax data. Q. J. Econ. 131, 519–578 (2016).

    Article  Google Scholar 

  4. Piketty, T. & Zucman, G. Capital is back: wealth-income ratios in rich countries 1700–2010. Q. J. Econ. 129, 1255–1310 (2014). Foundational paper on the long-run evolution of wealth inequality in rich countries.

    Article  Google Scholar 

  5. Jordà, Ò., Knoll, K., Kuvshinov, D., Schularick, M. & Taylor, A. M. The rate of return on everything, 1870–2015. Q. J. Econ. 134, 1225–1298 (2019).

    Article  Google Scholar 

  6. Cagé, J. The Price of Democracy: How Money Shapes Politics and What to Do About It (Harvard Univ. Press, 2020). Critical research on how wealth inequality affects the functioning of electoral systems.

  7. Gilens, M. & Page, B. I. Testing theories of American politics: elites, interest groups, and average citizens. Perspect. Politics 12, 564–581 (2014).

    Article  Google Scholar 

  8. Hart, O. Incomplete contracts and control. Am. Econ. Rev. 107, 1731–1752 (2017).

    Article  Google Scholar 

  9. Carter, M. R. & Barrett, C. B. in Understanding and Reducing Persistent Poverty in Africa (eds Barrett, C. B. et al.) 12–33 (Routledge, 2013).

  10. Diffenbaugh, N. S. & Burke, M. Global warming has increased global economic inequality. Proc. Natl Acad. Sci. USA 116, 9808–9813 (2019).

    Article  CAS  Google Scholar 

  11. Hallegatte, S. & Rozenberg, J. Climate change through a poverty lens. Nat. Clim. Change 7, 250–256 (2017). Important work on the effect of climatic events on poverty and inequality within low-income countries.

    Article  Google Scholar 

  12. Stern, N. The Economics of Climate Change (Cambridge Univ. Press, 2007).

  13. IPCC Climate Change 1995: Economic and Social Dimensions of Climate Change (eds Bruce, J. P. et al.) 13–14 (Cambridge Univ. Press, 1996).

  14. Rao, N. D., Van Ruijven, B. J., Riahi, K. & Bosetti, V. Improving poverty and inequality modelling in climate research. Nat. Clim. Change 7, 857–862 (2017).

    Article  Google Scholar 

  15. Ohlendorf, N., Jakob, M., Minx, J. C., Schröder, C. & Steckel, J. C. Distributional impacts of carbon pricing: a meta-analysis. Environ. Resour. Econ. 78, 1–42 (2021).

    Article  Google Scholar 

  16. Cevik, S. & Jalles, J. T. For whom the bell tolls: climate change and income inequality. Energy Policy 174, 113475 (2023).

    Article  Google Scholar 

  17. Emmerling, J. et al. A multi-model assessment of inequality and climate change. Nat. Clim. Change 14, 1254–1260 (2024).

  18. Palagi, E., Coronese, M., Lamperti, F. & Roventini, A. Climate change and the nonlinear impact of precipitation anomalies on income inequality. Proc. Natl Acad. Sci. USA 119, e2203595119 (2022). One of the first studies focusing on the impact of climate change on within-country inequality in a systematic manner and focusing on all countries.

    Article  CAS  Google Scholar 

  19. Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015). Foundational research on the effect of global warming on income inequality.

    Article  CAS  Google Scholar 

  20. Kalkuhl, M. & Wenz, L. The impact of climate conditions on economic production. Evidence from a global panel of regions. J. Environ. Econ. Manag. 103, 102360 (2020).

    Article  Google Scholar 

  21. Bernstein, A., Gustafson, M. T. & Lewis, R. Disaster on the horizon: the price effect of sea level rise. J. Financ. Econ. 134, 253–272 (2019).

    Article  Google Scholar 

  22. Baldauf, M., Garlappi, L. & Yannelis, C. Does climate change affect real estate prices? Only if you believe in it. Rev. Financ. Stud. 33, 1256–1295 (2020).

    Article  Google Scholar 

  23. Krishnan, M. et al. The Net-zero Transition: What it Would Cost, What it Could Bring (McKinsey & Company, 2022); https://www.mckinsey.com/capabilities/sustainability/our-insights/the-net-zero-transition-what-it-would-cost-what-it-could-bring

  24. Buchner, B. et al. Global Landscape of Climate Finance 2023 (Climate Policy Initiative, 2023); https://www.climatepolicyinitiative.org/publication/global-landscape-of-climate-finance-2023Among the most comprehensive estimates of required climate investments across countries and sectors.

  25. Bauer, N. et al. Quantification of an efficiency–sovereignty trade-off in climate policy. Nature 588, 261–266 (2020).

    Article  CAS  Google Scholar 

  26. Kotlikoff, L., Kubler, F., Polbin, A., Sachs, J. & Scheidegger, S. Making carbon taxation a generational win win. Int. Econ. Rev. 62, 3–46 (2021).

    Article  Google Scholar 

  27. Pardy, M., Riom, C. & Hoffmann, R. Climate Impacts on Material Wealth Inequality: Global Evidence from a Subnational Dataset LSE Geography and Environment Discussion Paper Series 48 (London School of Economics and Political Science, 2024).

  28. Chancel, L., Mohren, C., Bothe, P. & Semieniuk, G. Climate Change and Wealth Inequality: A Literature Review and Numerical Insights (World Inequality Lab, 2024).

  29. Blanchet, T. et al. Distributional National Accounts Guidelines: Methods and Concepts Used in the World Inequality Database (World Inequality Lab, 2024); https://wid.world/document/distributional-national-accounts-guidelines-2020-concepts-and-methods-used-in-the-world-inequality-database/

  30. Garbinti, B., Goupille-Lebret, J. & Piketty, T. Accounting for wealth-inequality dynamics: methods, estimates, and simulations for France. J. Eur. Econ. Assoc. 19, 620–663 (2021).

    Article  Google Scholar 

  31. Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article  Google Scholar 

  32. Leisner, C. P. Climate change impacts on food security - focus on perennial cropping systems and nutritional value. Plant Sci. 293, 110412 (2020).

    Article  CAS  Google Scholar 

  33. Dasgupta, S. et al. Effects of climate change on combined labour productivity and supply: an empirical, multi-model study. Lancet Planet. Health 5, e455–e465 (2021).

    Article  Google Scholar 

  34. Coronese, M., Crippa, F., Lamperti, F., Chiaromonte, F. & Roventini, A. Raided by the storm: how three decades of thunderstorms shaped US incomes and wages. J. Environ. Econ. Manag. 130, 103074 (2025).

    Article  Google Scholar 

  35. Kahn, M. E. et al. Long-term macroeconomic effects of climate change: a cross-country analysis. Energy Econ. 104, 105624 (2021).

    Article  Google Scholar 

  36. Mani, M., Bandyopadhyay, S., Chonabayashi, S. & Markandya, A. South Asia’s Hotspots: The Impact of Temperature and Precipitation Changes on Living Standards (World Bank, 2018).

  37. Fankhauser, S. & Tol, R. S. On climate change and economic growth. Resour. Energy Econ. 27, 1–17 (2005).

    Article  Google Scholar 

  38. Sinking Tax Base: Land & Property at Risk from Rising Seas (Climate Central, 2022); https://assets.ctfassets.net/cxgxgstp8r5d/2KKeTjnqbFelWrZalnPeRR/9a28719038f3a1dddbdd2e8b78b8455b/CC_Sinking_Tax_Base_20220908a.pdf

  39. Gibson, M. & Mullins, J. T. Climate risk and beliefs in New York floodplains. J. Assoc. Environ. Resour. Econ. 7, 1069–1111 (2020).

    Google Scholar 

  40. Blanchet, T. & Martínez-Toledano, C. Wealth inequality dynamics in Europe and the United States: understanding the determinants. J. Monet. Econ. 133, 25–43 (2023).

    Article  Google Scholar 

  41. Semieniuk, G. et al. Potential pension fund losses should not deter high-income countries from bold climate action. Joule 7, 1383–1387 (2023). One of the first studies to focus on stranded assets and the distribution of financial wealth.

  42. Walker, G. P. et al. Addressing Environmental Inequalities: Flood Risk (Environment Agency, 2006).

  43. Sayers, P., Penning-Rowsell, E. C. & Horritt, M. Flood vulnerability, risk, and social disadvantage: current and future patterns in the UK. Reg. Environ. Change 18, 339–352 (2018).

    Article  Google Scholar 

  44. Rözer, V. & Surminski, S. Current and future flood risk of new build homes across different socio-economic neighbourhoods in England and Wales. Environ. Res. Lett. 16, 054021 (2021).

    Article  Google Scholar 

  45. Osberghaus, D. Poorly adapted but nothing to lose? A study on the flood risk–income relationship with a focus on low-income households. Clim. Risk Manag. 31, 100268 (2021).

    Article  Google Scholar 

  46. Berg, G. & Schrader, J. Access to credit, natural disasters, and relationship lending. J. Financ. Intermed. 21, 549–568 (2012).

    Article  Google Scholar 

  47. Batung, E. S., Mohammed, K., Kansanga, M. M., Nyantakyi-Frimpong, H. & Luginaah, I. Credit access and perceived climate change resilience of smallholder farmers in semi-arid northern Ghana. Environ. Dev. Sustain. 25, 321–350 (2023).

    Article  Google Scholar 

  48. Aghion, P., Akcigit, U., Bergeaud, A., Blundell, R. & Hémous, D. Innovation and top income inequality. Rev. Econ. Stud. 86, 1–45 (2019).

    Article  Google Scholar 

  49. Alvaredo, F., Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2018 (Belknap Press, 2018).

  50. Lamperti, F., Bosetti, V., Roventini, A. & Tavoni, M. The public costs of climate-induced financial instability. Nat. Clim. Change 9, 829–833 (2019).

    Article  Google Scholar 

  51. Tienhaara, K., Thrasher, R., Simmons, B. A. & Gallagher, K. P. Investor-state disputes threaten the global green energy transition. Science 376, 701–703 (2022).

    Article  CAS  Google Scholar 

  52. Eaglesham, J. Buying home and auto insurance is becoming impossible. The Wall Street Journal (8 January 2024); https://www.wsj.com/business/insurance-home-auto-rate-increases-climate-change-03b806f3

  53. Climate-Related Risk and Financial Stability (European Systemic Risk Board, 2021); https://www.esrb.europa.eu/pub/pdf/reports/esrb.climateriskfinancialstability202107~79c10eba1a.en.pdf

  54. Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science 353, 790–794 (2016).

    Article  CAS  Google Scholar 

  55. Atreya, A., Ferreira, S. & Michel-Kerjan, E. What drives households to buy flood insurance? New evidence from Georgia. Ecol. Econ. 117, 153–161 (2015).

    Article  Google Scholar 

  56. Bin, O. & Landry, C. E. Changes in implicit flood risk premiums: empirical evidence from the housing market. J. Environ. Econ. Manag. 65, 361–376 (2013). Important research on the effect of climate disasters on real estate dynamics in the United States.

    Article  Google Scholar 

  57. Beltrán, A., Maddison, D. & Elliott, R. J. Is flood risk capitalised into property values? Ecol. Econ. 146, 668–685 (2018).

    Article  Google Scholar 

  58. Daniel, V. E., Florax, R. J. & Rietveld, P. Flooding risk and housing values: an economic assessment of environmental hazard. Ecol. Econ. 69, 355–365 (2009).

    Article  Google Scholar 

  59. McCoy, S. J. & Walsh, R. P. Wildfire risk, salience & housing demand. J. Environ. Econ. Manag. 91, 203–228 (2018).

    Article  Google Scholar 

  60. Hirsch, J. & Hahn, J. How flood risk impacts residential rents and property prices: empirical analysis of a German property market. J. Prop. Invest. Financ. 36, 50–67 (2018).

    Article  Google Scholar 

  61. Fuerst, F. & Warren-Myers, G. Pricing climate risk: are flooding and sea level rise risk capitalised in Australian residential property? Clim. Risk Manag. 34, 100361 (2021).

    Article  Google Scholar 

  62. Athukorala, W., Martin, W., Wilson, C. & Rajapaksa, D. Valuing bushfire risk to homeowners: hedonic property values study in Queensland, Australia. Econ. Anal. Policy 63, 44–56 (2019).

    Article  Google Scholar 

  63. Bosker, M., Garretsen, H., Marlet, G. & van Woerkens, C. Nether Lands: evidence on the price and perception of rare natural disasters. J. Eur. Econ. Assoc. 17, 413–453 (2019).

    Article  Google Scholar 

  64. Miller, N. G., Gabe, J. & Sklarz, M. The impact of water front location on residential home values considering flood risks. J. Sustain. Real Estate 11, 84–107 (2019).

    Article  Google Scholar 

  65. Addoum, J. M., Eichholtz, P., Steiner, E. & Yönder, E. Climate change and commercial real estate: evidence from Hurricane Sandy. Real Estate Econ. 52, 687–713 (2024).

  66. Fisher, J. D. & Rutledge, S. R. The impact of hurricanes on the value of commercial real estate. Bus. Econ. 56, 129–145 (2021).

    Article  Google Scholar 

  67. Bareille, F. & Chakir, R. The impact of climate change on farmland prices: a repeat-Ricardian analysis. J. Environ. Econ. Manag. 119, 102822 (2022).

    Article  Google Scholar 

  68. Kabubo-Mariara, J. & Karanja, F. K. The economic impact of climate change on Kenyan crop agriculture: a Ricardian approach. Glob. Planet. Change 57, 319–330 (2007).

    Article  Google Scholar 

  69. Deschênes, O. & Greenstone, M. The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather. Am. Econ. Rev. 97, 354–385 (2007). A foundational paper on the effects of climate change on agricultural output.

    Article  Google Scholar 

  70. Deschênes, O. & Greenstone, M. The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather: reply. Am. Econ. Rev. 102, 3761–3773 (2012).

    Article  Google Scholar 

  71. Schlenker, W., Michael Hanemann, W. & Fisher, A. C. Will US agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach. Am. Econ. Rev. 95, 395–406 (2005).

    Article  Google Scholar 

  72. Schlenker, W., Hanemann, W. M. & Fisher, A. C. The impact of global warming on US agriculture: an econometric analysis of optimal growing conditions. Rev. Econ. Stat. 88, 113–125 (2006).

    Article  Google Scholar 

  73. Quaye, F., Nadolnyak, D. & Hartarska, V. Climate change impacts on farmland values in the southeast United States. Sustainability 10, 3426 (2018).

    Article  Google Scholar 

  74. Cheng, M., McCarl, B. & Fei, C. Climate change and livestock production: a literature review. Atmosphere 13, 140 (2022).

    Article  CAS  Google Scholar 

  75. Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T. & Woznicki, S. A. Climate change and livestock: impacts, adaptation, and mitigation. Clim. Risk Manag. 16, 145–163 (2017).

    Article  Google Scholar 

  76. Lippert, C., Feuerbacher, A. & Narjes, M. Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations. Ecol. Econ. 180, 106860 (2021).

    Article  Google Scholar 

  77. Paudel, Y. P., Mackereth, R., Hanley, R. & Qin, W. Honey bees (Apis mellifera L.) and pollination issues: current status, impacts, and potential drivers of decline. J. Agric. Sci. 7, 93 (2015).

    Google Scholar 

  78. Harmsen, M. et al. The role of methane in future climate strategies: mitigation potentials and climate impacts. Climatic Change 163, 1409–1425 (2020).

    Article  CAS  Google Scholar 

  79. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  Google Scholar 

  80. Lenoir, J. & Svenning, J.-C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Article  Google Scholar 

  81. Woetzel, L. et al. Reduced Dividends on Natural Capital? (McKinsey & Company, 2020); https://www.mckinsey.com/~/media/mckinsey/business%20functions/sustainability/our%20insights/reduced%20dividends%20on%20natural%20capital/mgi-reduced-dividends-on-natural-capital.pdf

  82. Nature Risk Rising: Why the Crisis Engulfing Nature Matters for Business and the Economy (World Economic Forum, 2020); https://www.weforum.org/publications/nature-risk-rising-why-the-crisis-engulfing-nature-matters-for-business-and-the-economy/

  83. Hanewinkel, M., Cullmann, D., Schelhaas, M., Nabuurs, G. & Zimmermann, N. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).

  84. Net Zero by 2050: A Roadmap for the Global Energy Sector (International Energy Agency, 2021); https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf

  85. Global EV Outlook 2020: Entering the Decade of Electric Drive? (International Energy Agency, 2020); https://iea.blob.core.windows.net/assets/af46e012-18c2-44d6-becd-bad21fa844fd/Global_EV_Outlook_2020.pdf

  86. Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019). The paper measures the value of fossil energy infrastructure that should be phased out in decarbonization scenarios, with a differentiation by sector and country.

    Article  CAS  Google Scholar 

  87. Linquiti, P. & Cogswell, N. The carbon ask: effects of climate policy on the value of fossil fuel resources and the implications for technological innovation. J. Environ. Stud. Sci. 6, 662–676 (2016).

    Article  Google Scholar 

  88. Edwards, M. R. et al. Quantifying the regional stranded asset risks from new coal plants under 1.5 °C. Environ. Res. Lett. 17, 024029 (2022).

    Article  Google Scholar 

  89. Van der Ploeg, F. & Rezai, A. Stranded assets in the transition to a carbon-free economy. Annu. Rev. Resour. Econ. 12, 281–298 (2020).

    Article  Google Scholar 

  90. Mercure, J.-F. et al. Reframing incentives for climate policy action. Nat. Energy 6, 1133–1143 (2021).

    Article  Google Scholar 

  91. Lewis, M. C., Voisin, S., Hazra, S., Mary, S. & Walker, R. Energy Transition & Climate Change: Stranded Assets, Fossilised Revenues (Kepler Cheuvreux, 2014); https://divestinvest.org/wp-content/uploads/2017/09/Kepler-Cheuvreux.-Fossilised-Returns..pdf

  92. Hansen, T. Stranded assets and reduced profits: analyzing the economic underpinnings of the fossil fuel industry’s resistance to climate stabilization. Renew. Sustain. Energy Rev. 158, 112144 (2022).

    Article  Google Scholar 

  93. Semieniuk, G. et al. Stranded fossil-fuel assets translate to major losses for investors in advanced economies. Nat. Clim. Change 12, 532–538 (2022).

  94. Muldoon-Smith, K. & Greenhalgh, P. Suspect foundations: developing an understanding of climate-related stranded assets in the global real estate sector. Energy Res. Soc. Sci. 54, 60–67 (2019).

    Article  Google Scholar 

  95. Welsby, D., Price, J., Pye, S. & Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021).

    Article  CAS  Google Scholar 

  96. Jakob, M. & Semieniuk, G. in Encyclopedia of Monetary Policy, Financial Markets and Banking (ed. Apergis, N.) (in the press).

  97. Semieniuk, G., Campiglio, E., Mercure, J.-F., Volz, U. & Edwards, N. R. Low-carbon transition risks for finance. Wiley Interdiscip. Rev. Clim. Change 12, e678 (2021).

    Article  Google Scholar 

  98. Campiglio, E., Daumas, L., Monnin, P. & von Jagow, A. Climate-related risks in financial assets. J. Econ. Surv. 37, 950–992 (2023).

    Article  Google Scholar 

  99. Monasterolo, I. Climate change and the financial system. Annu. Rev. Resour. Econ. 12, 299–320 (2020).

    Article  Google Scholar 

  100. Byrd, J. & Cooperman, E. S. Investors and stranded asset risk: evidence from shareholder responses to carbon capture and sequestration (CCS) events. J. Sustain. Finance Invest. 8, 185–202 (2018).

    Article  Google Scholar 

  101. Goldsmith-Pinkham, P., Gustafson, M. T., Lewis, R. C. & Schwert, M. Sea-level rise exposure and municipal bond yields. Rev. Financ. Stud. 36, 4588–4635 (2023).

    Article  Google Scholar 

  102. Painter, M. An inconvenient cost: the effects of climate change on municipal bonds. J. Financ. Econ. 135, 468–482 (2020).

    Article  Google Scholar 

  103. Bourdeau-Brien, M. & Kryzanowski, L. Natural disasters and risk aversion. J. Econ. Behav. Organ. 177, 818–835 (2020).

    Article  Google Scholar 

  104. Balvers, R., Du, D. & Zhao, X. Temperature shocks and the cost of equity capital: implications for climate change perceptions. J. Bank. Finance 77, 18–34 (2017).

    Article  Google Scholar 

  105. Griffin, P., Lont, D. & Lubberink, M. Extreme high surface temperature events and equity-related physical climate risk. Weather Clim. Extremes 26, 100220 (2019).

    Article  Google Scholar 

  106. Makridis, C. A. & Schloetzer, J. D. Extreme local temperatures lower expressed sentiment about US economic conditions with implications for the stock returns of local firms. J. Behav. Exp. Finance 37, 100710 (2023).

    Article  Google Scholar 

  107. Nagar, V. & Schoenfeld, J. Measuring weather exposure with annual reports. Rev. Acc. Stud. 29, 1–32 (2024).

  108. Mandel, A. et al. Risks on global financial stability induced by climate change: the case of flood risks. Climatic Change 166, 4 (2021). Critical research on the potential propagation of climate change in the financial sector.

    Article  Google Scholar 

  109. Klomp, J. Financial fragility and natural disasters: an empirical analysis. J. Financ. Stab. 13, 180–192 (2014).

    Article  Google Scholar 

  110. Noth, F. & Schüwer, U. Natural disaster and bank stability: evidence from the US financial system. J. Environ. Econ. Manag. 119, 102792 (2023).

    Article  Google Scholar 

  111. Monasterolo, I. & De Angelis, L. Blind to carbon risk? An analysis of stock market reaction to the Paris Agreement. Ecol. Econ. 170, 106571 (2020).

    Article  Google Scholar 

  112. Wen, F., Wu, N. & Gong, X. China’s carbon emissions trading and stock returns. Energy Econ. 86, 104627 (2020).

    Article  Google Scholar 

  113. Bongiorno, L. et al. Climate scenario analysis: an illustration of potential long-term economic & financial market impacts. Br. Actuar. J. 27, e7 (2022).

    Article  Google Scholar 

  114. Roncoroni, A., Battiston, S., Escobar-Farfán, L. O. & Martinez-Jaramillo, S. Climate risk and financial stability in the network of banks and investment funds. J. Financ. Stab. 54, 100870 (2021).

    Article  Google Scholar 

  115. Giuzio, M. et al. Climate change and financial stability. Financ. Stab. Rev. 1, 1–18 (2019).

    Google Scholar 

  116. Battiston, S., Mandel, A., Monasterolo, I., Schütze, F. & Visentin, G. A climate stress-test of the financial system. Nat. Clim. Change 7, 283–288 (2017).

    Article  Google Scholar 

  117. Sensitivity Analysis of Climate-Change Related Transition Risks (EIOPA, 2020).

  118. Anttila-Hughes, J. Financial market response to extreme events indicating climatic change. Eur. Phys. J. Spec. Top. 225, 527–538 (2016).

    Article  Google Scholar 

  119. Ardia, D., Bluteau, K., Boudt, K. & Inghelbrecht, K. Climate change concerns and the performance of green vs. brown stocks. Manag. Sci. 69, 7607–7632 (2023).

    Article  Google Scholar 

  120. Alessi, L., Ossola, E. & Panzica, R. What greenium matters in the stock market? The role of greenhouse gas emissions and environmental disclosures. J. Financ. Stab. 54, 100869 (2021).

    Article  Google Scholar 

  121. Bernardini, E., Di Giampaolo, J., Faiella, I. & Poli, R. The impact of carbon risk on stock returns: evidence from the European electric utilities. J. Sustain. Finance Invest. 11, 1–26 (2021).

    Article  Google Scholar 

  122. Chava, S. Environmental externalities and cost of capital. Manag. Sci. 60, 2223–2247 (2014).

    Article  Google Scholar 

  123. Cheema-Fox, A., LaPerla, B. R., Serafeim, G., Turkington, D. & Wang, H. S. Decarbonization factors. J. Impact ESG Invest. 2, 47–73 (2021).

    Article  Google Scholar 

  124. Cui, Y., Geobey, S., Weber, O. & Lin, H. The impact of green lending on credit risk in China. Sustainability 10, 2008 (2018).

    Article  Google Scholar 

  125. Keppo, I. et al. Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models. Environ. Res. Lett. 16, 053006 (2021).

    Article  Google Scholar 

  126. Mercure, J.-F., Pollitt, H., Bassi, A. M., Viñuales, J. E. & Edwards, N. R. Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Glob. Environ. Change 37, 102–115 (2016).

    Article  Google Scholar 

  127. Sanders, M. et al. Representation of financial markets in macro-economic transition models—a review and suggestions for extensions. Environ. Res. Lett. 17, 083001 (2022).

    Article  Google Scholar 

  128. Reid, J., Bernhardt, A., Sowden, S. & Lockridge, K. in World Scientific Encyclopedia of Climate Change: Case Studies of Climate Risk, Action, and Opportunity Vol. 1 (ed. Dash, J. W.) 51–56 (World Scientific, 2021).

  129. Changing Course (UNEP Finance Initiative, 2019); https://www.unepfi.org/industries/investment/changing-course-a-comprehensive-investor-guide-to-scenario-based-methods-for-climate-risk-assessment-in-response-to-the-tcfd/

  130. Ralite, S. & Thomä, J. Storm Ahead: A Proposal for a Climate Stress-Test Scenario (2° Investing Initiative, 2019); https://sustainablefinanceobservatory.org/resource/storm-ahead-a-proposal-for-a-climate-stress-test-scenario/

  131. Approach to Assessing Climate Change Risks for Sovereign Issuers (Moody’s Investors Service, 2016).

  132. Cortés Arbués, I. et al. Distribution of economic damages due to climate-driven sea-level rise across European regions and sectors. Sci. Rep. 14, 126 (2024).

    Article  Google Scholar 

  133. Battiston, S. & Monasterolo, I. A climate risk assessment of sovereign bonds’ portfolio. Preprint at SSRN https://doi.org/10.2139/ssrn.3376218 (2019).

  134. Tsigaris, P. & Wood, J. The potential impacts of climate change on capital in the 21st century. Ecol. Econ. 162, 74–86 (2019).

    Article  Google Scholar 

  135. Van der Straten, Y. Flooded House or Underwater Mortgage? The Implications of Climate Change and Adaptation on Housing, Income, and Wealth Tinbergen Institute Discussion Paper TI 2023-014/IV (Tinbergen Institute, 2023).

  136. Dennig, F., Budolfson, M. B., Fleurbaey, F., Siebert, A. & Socolow, R. H. Inequality climate impacts on the future poor and carbon prices. Proc. Natl Acad. Sci. USA 112, 15827–15832 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to S. Hallegatte, T. Piketty, D. Rodrik, I. Weber and colleagues from the World Inequality Lab for their valuable feedback on earlier drafts of this paper. Support from the Stone Program at Harvard Kennedy School is gratefully acknowledged, as well as from a European Union Horizon 2020 grant (WISE Horizons number 101095219). The findings, interpretations and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Chancel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks José-Luis Cruz, Julie Rozenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chancel, L., Mohren, C., Bothe, P. et al. Climate change and the global distribution of wealth. Nat. Clim. Chang. 15, 364–374 (2025). https://doi.org/10.1038/s41558-025-02268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-025-02268-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing