
RAINFALL AND THE ROLE OF THE AMAZON FOREST
The Amazon Forest provides many crucial ecological services in Brazil and beyond, including 
serving as a carbon sink and regulating air quality. Without these benefits, Brazil and other 
countries would lose a primary support to their development and existence. Often in climate 
discussions, the forest is reduced to a carbon sink and forest loss is only used to account for 
emissions, but one important ecological service worthy of greater consideration is the forest’s 
ability to control rainfall at a continental scale, which affects agricultural production, energy 
generation, and urban water supply.

In this insight, Climate Policy Initiative/Pontifical Catholic University of Rio de Janeiro (CPI/
PUC-Rio) shows that Amazon deforestation affects rainfall in the state of Mato Grosso – one of 
the most important agricultural hubs in the world, home to more than three million people, and 
8 hydroelectric power plants. As a case study, CPI/PUC-Rio shows that the deforestation of the 
Xingu River region could lead to a decrease of 7% of the annual historical average precipitation in 
the state of Mato Grosso. This impact varies greatly across the state and throughout the seasons. 
The estimated decrease in the wet season due to deforestation could reach 8% of the historical 
seasonal rainfall average, with the center and north of the state being the most affected. During 
the dry season, the estimated impact of deforestation could result in a 15% decrease of the 
historical seasonal average, with the center and the northwest regions being the most affected.

Table 1. Impact of Deforestation on Rainfall Reduction in Mato Grosso

Source: CPI/PUC-Rio, 2021
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Continental precipitation starts in the ocean where the sun’s energy converts salt water to 
water vapor that is then transported through atmospheric circulation to continental lands. In 
doing so, each air parcel travels over different types of terrain, including densely populated 
areas, huge monoculture landscapes of soybeans, and dense tropical forest areas. Each type 
of terrain sustains and provides humidity to each air parcel differently. Forest areas, among 
all types, maintain and provide the most humidity to the air. The implication of this process 
is straightforward: air that travels over forest delivers more rainfall. As a result, deforestation 
reduces rainfall.

Figure 1. Rainfall Trajectory

Source: CPI/PUC-Rio, 2021

Significantly, this rainfall process takes place over large areas covering thousands of kilometers, 
which means the Amazon’s deforestation affects rainfall not only in Brazil but also in Argentina 
and other South American countries. 

This insight summarizes findings using atmospheric transport model to connect deforestation 
in the Amazon to rainfall in the state of Mato Grosso. Furthermore, it provides a general 
framework that can be adapted as a tool to analyze the effects of deforestation on rainfall in 
different settings.1

1 Spracklen, Dominick, et al. “The Effects of Tropical Vegetation on Rainfall”. Annual Review of Environment and Resources 43 (2018): 193-218.  
bit.ly/3zPtaXF.

1 Precipitation starts in the ocean, where the sun's 
heat evaporates the seawater, which is transported 
to the continent through air currents.2 Clouds are transported through 

di�erent types of region, which 
provide humidity. The forest 
areas are the ones that provide 
more humidity to the clouds.

http://bit.ly/3zPtaXF
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HOW DEFORESTATION AFFECTS RAINFALL: CASE STUDY 
IN MATO GROSSO
Rainfall levels in the state of Mato Grosso are already on decline and deforestation may further 
reduce them. Figure 2a shows a slight drop in overall annual mean precipitation over the 35-year 
period between 1985 and 2020. However, the results of this study illustrate how precipitation 
may decline even further if deforestation increases. Also, the marked gap between wet and dry 
seasons (Figure 2b) may widen even more. 

Figure 2. Rainfall in Mato Grosso, 1985-2015
Figure 2. Rainfall in Mato Grosso, 1985-2015

Source: CPI/PUC-Rio with data from ERA5, 2021
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These figures show the average annual precipitation (Figure 2a) and monthly average precipitation 
(Figure 2b) for each municipality in the state of Mato Grosso. Figure 2a shows a slight decline trend, 
particularly between 1985 and 2005, while Figure 2b illustrates the markedly difference between the dry 
season (May to August) and the wet season (September to April).

Source: CPI/PUC-Rio with data from ERA5, 2021

To further investigate this phenomenon, the author considered what would happen if deforestation 
expanded over the Indigenous territories located in the Xingu River Basin (Figure 3). This basin 
comprises eleven Indigenous territories that cover 140,000 km2. Apart from the northern region, 
the surroundings of this area have been completely deforested, due to expanded soybean planting 
and cattle pastures. 

Figure 3. Indigenous Territories in Xingu’s River Basin

This figure shows the location of the Indigenous Territories of the Xingu River Basin. This is the region 
that, in the counterfactual scenario, is totally deforested.

Source: CPI/PUC-Rio with data from FUNAI and MapBiomas, 2021

Figure 3.  Indigenous Territories in Xingu’s River Basin

Source: CPI/PUC-Rio with data from FUNAI and MapBiomas, 2021

Indigenous Territories in Xingu’s Basin
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How much rainfall do the territories located in the Xingu River Basin provide to the state of 
Mato Grosso? Which regions of the state benefit the most from this ecological service? To 
answer these questions, it is necessary to build a counterfactual scenario where the entirety of 
the Xingu’s Indigenous territories is deforested. This counterfactual exercise shows an average 
decrease of 7% of the annual historical average precipitation in the state of Mato Grosso.

Figure 4 shows the rainfall decrease resulting from the Xingu’s deforestation for wet and dry 
seasons, as a proportion of the historical average. In the wet season, rainfall level is expected to 
decline up to 8% of the historical average. The effect is much more pronounced in the dry season, 
where the level of rainfall can decrease up to 15% of the historical average. The center of the 
state, where the most productive agricultural producers are, is strongly affected in both seasons. 
The north of the state, where the Teles Pires hydroelectric power plant is located, is one of the 
most affected areas in the wet season. However, due to wind patterns, rainfall in the eastern part 
of the state remains almost unaffected.

Figure 4. Counterfactual Variation in Rainfall due to Xingu’s River Basin Deforestation

These maps show the impact of the Xingu region deforestation on rainfall, as a proportion of the 
historical average. Higher values (yellow) mean a higher impact of the deforestation on rainfall. For the 
dry season (Figure 4a), the Xingu region deforestation may decrease rainfall up to 14% of the historical 
average. For the wet season, the Xingu region deforestation may decrease rainfall up to 8% of the 
historical average.

Source: CPI/PUC-Rio with data from ERA5, FUNAI, and MapBiomas, 2021
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Source: CPI/PUC-Rio with data from ERA5, FUNAI and Mapbiomas, 2021
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This exercise highlights a range of important results. First, the results show the significance of 
protected areas for providing dependability of rainfall and all the economic activities it helps 
sustain. Second, the impact of deforestation on reducing rainfall is sizeable. An 8% decrease 
in rainfall levels in the wet season and a 15% decrease in the dry season will affect agricultural 
productivity, urban water supply, and reservoirs of hydroelectric plants. Third, it is important to 
note that these effects are not the same throughout Mato Grosso and throughout the year. In 
general, agriculture, energy, and urban water supply in Mato Grosso benefit from more rainfall 
but, the month that each sector benefits the most from more rain is different. These variations 
in effects thus generate substantial differences in exposure to deforestation-induced rainfall 
changes not only across different regions, but also across different sectors. Potential winners 
and losers from deforestation are decided by a complex but predictable system of atmospheric 
transport. For example, the expansion of pastureland into the Xingu’s region can benefit local 
ranchers, at the expense of decreasing rainfall in the growing season for soybeans producers in 
the center of the state.

CPI/PUC-Rio also detailed the effect of the Xingu’s region deforestation on precipitation, month 
by month. In Figure 5, the effect for the months of the wet season is displayed. It is interesting to 
note that not only does the magnitude of the effects vary across months, but so does the spatial 
distribution. Across the wet season the biggest effects move from west to east, as the wind 
patterns change. Figure 6 shows a different pattern for the dry season, with the center of the 
state being the most affected throughout the months. This is important because sectors benefit 
differently from more rainfall in each month. For example, soybean producers benefit most from 
rain in the growing season (October to December), while a run-of-the-river dam has the greatest 
benefits from rain in the seasonal peak demand for energy (February to March).
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Figure 5. Counterfactual Variation in Rainfall due to Xingu River Basin Deforestation Month by Month in the 
Wet Season
Figure 5. Counterfactual Variation in Rainfall due to Xingu River Basin Deforestation Month by Month 
in the Wet Season 

Source: CPI/PUC-Rio with data from ERA5, FUNAI and Mapbiomas, 2021
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These maps show the impact of the Xingu region deforestation on rainfall for the wet season, 
as a proportion of the historical average. Higher values (yellow) mean a higher impact of the 
deforestation on rainfall. Each map shows the deforestation effect on rainfall for that month. For 
example, the Xingu Region deforestation may decrease rainfall in December up to 7% of the historical 
average of that month.

Source: CPI/PUC-Rio with data from ERA5, FUNAI, and MapBiomas, 2021

Figure 6. Counterfactual Variation in Rainfall due to Xingu’s River Basin Deforestation Month by Month  
in the Dry Season

Figure 6. Counterfactual Variation in Rainfall due to Xingu’s River Basin Deforestation Month by 
Month in the Dry Season

Source: CPI/PUC-Rio with data from ERA5, FUNAI and Mapbiomas, 2021
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These maps show the impact of the Xingu region deforestation on rainfall for the dry season, as a 
proportion of the historical average. Higher values (yellow) mean a higher impact of the deforestation 
on rainfall. Each map shows the deforestation effect on rainfall for that month. For example, the Xingu 
Region deforestation may decrease rainfall in April up to 12% of the historical average of that month.

Source: CPI/PUC-Rio with data from ERA5, FUNAI and MapBiomas, 2021

Finally, it is important to acknowledge that every study has its caveats. This study does not 
compound the synergies of climate change and other regions’ deforestation to the effect of the 
Xingu’s deforestation. Also, hydrological effects of deforestation on Xingu River itself are not 
considered, even though they are likely to further contribute to the decrease of precipitation and 
water supply in general. Taken together, this counterfactual exercise offers a lower bound effect 
of deforestation on rainfall. 

CONCLUSION
Tropical forests provide a range of ecological services that are crucial to socioeconomical 
activities. This study by CPI/PUC-Rio provides a framework to analyze the effects of 
deforestation on the rainfall of regions located hundreds or thousands of kilometers 
away from the deforestation. This tool can give power to local governments and local 
populations to advocate for stronger conservation efforts in specific policies that are known 
to generate deforestation. The tool can also be adapted to other regions, both in Brazil and 
across South America.

The deforestation of the Xingu River Basin is a case that illustrates the broad range of 
stakeholders who would be impacted by failing to protect the region and the subsequent 
widespread variation in rainfall and droughts that would occur. Identifying and quantifying the 
gains and losses associated with deforestation is a necessary step to increase transparency and 
accountability of public policies in the Amazon Forest. 

METHODOLOGY: A CLIMATE MODEL TO MEASURE THE 
RELATIONSHIP BETWEEN DEFORESTATION AND RAINFALL 
The same way that one can follow a river upstream to find its source, one can follow the wind 
direction to find its path from the ocean. This path is called a back trajectory of atmospheric 
transport. Atmospheric transport models reconstruct the back trajectory of an air parcel that is 
over a location at the given moment of rainfall. The author used averaged monthly wind speed 
and direction from ERA5 to build back trajectories for every month from 1985 to 2020. 

Figure 7 shows a set of five-day back trajectories from the state of Mato Grosso for two different 
selected months from 2002 to illustrate what the back trajectories look like. They identify a 
distinctive pattern across months in the year, with the rainy season receiving winds from the 
Amazon (north to south) while the dry season receives winds from outside the Amazon (east to 
west). Each blue line represents a wind trajectory ending in a point in Mato Grosso, with the wind 
covering different types of terrain. The main explanatory variable of the model is a count of how 
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many pixels (locations) with forest cover the wind has covered. The higher this variable is, the 
more likely it is that the air parcel can maintain and increase its humidity. 

Figure 7. Back Trajectories of Atmospheric Transport, 2002
Figure 7. Back Trajectories of Atmospheric Transport, 2002

Source: CPI/PUC-Rio with data from ERA5, 2021
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These maps illustrate the back trajectories of atmospheric transport for two specific months (February 
2002 and July 2002). A blue line represents the trajectory of the wind from the ocean to a location in 
the state of Mato Grosso. Note that the trajectories directions are very distinctive for the two months. 
This is a general pattern, with the wet season being characterized by trajectories moving north to south, 
and the dry season by trajectories from east to west. 

Source: CPI/PUC-Rio with data from ERA5, 2021

In addition to the natural variability of the count of forest pixels across months in a year, the 
average count along the years has seen a steady decline, due to deforestation, as shown in 
Figure 8a, where the deviations from the average count of forest pixel per year is shown for each 
municipality of the state of Mato Grosso. This steady decline results in a drop of average rainfall, 
year after year. 

To count forest pixels across paths, CPI/PUC-Rio uses data from the Pan-Amazon MapBiomas 
from 1985 to 2018. This data classifies land use for the entire Amazon territory using satellite 
data. Originally in 30 meters resolution, the data are converted to 0.25 degrees, where each pixel 
stores the proportion of 30 meters pixels classified as forest.

To formally estimate the effect of forest count on rainfall, a fixed effects estimator is employed, as 
described in Equation 1:

𝒓𝒍𝒎𝒚= 𝛼 + 𝜷𝒎𝒄𝒍𝒎𝒚+  𝛄𝒍𝒎+  𝛄𝒚+ 𝛄𝜲𝒍𝒎𝒚+  𝝐𝒍𝒎𝒚

The parameters of interest are 𝜷𝒎, which give the effect of forest count (𝒄𝒍𝒎𝒚) on rainfall (𝒓𝒍𝒎𝒚) 
for each month of the year. Additional variables, such as total distance traveled (𝜲𝒍𝒎𝒚) and fixed 
effects of location-month and year (𝛄𝒍𝒎, 𝛄𝒚) control for a range of potential confounding variables 
that could offer alternatives explanations for the observed relationship between rainfall and forest 
count. The main result of this regression is shown in Figure 8b. Each coefficient 𝜷𝒎 shows the 
effect of an increase of one standard deviation in the forest count variable on rainfall, measured 
as millimeter equivalent per day. The standard errors show that, given the model, the uncertainty 
around the effect is low.
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Figure 8. Forest Count and Precipitation, 1985-2015

Figure 8a shows evolution of the forest count variable (as deviations from the mean) throughout the 
years for each municipality of the state of Mato Grosso. Values below zero mean that the forest count is 
below the historical average. Note the steady decline for all series, due to the increasing deforestation. 
Figure 8b shows the estimated coefficients of the empirical climate model described in Equation 1. Each 
month (m) shows the estimated coefficient 𝜷𝒎. The small vertical lines show the estimated standard 
deviation of the estimative. The magnitude of the effect is stronger in the months of the wet season, 
even though, proportionally, this effect is stronger for the months of the dry season.

Source: CPI/PUC-Rio with data from ERA5 and MapBiomas, 2021

Figure 8. Forest Count and Precipitation, 1985-2015

Source: CPI/PUC-Rio with data from ERA5 and Mapbiomas, 2021
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There are two main differences between the model in Equation 1 and the models that are 
currently found in the literature. First, the forest count variable (𝒄𝒍𝒎𝒚) could be replaced with a 
Leaf Area Index (LAI) variable. This would require LAI to be input in counterfactual scenarios of 
deforestation, a task that is not straightforward, given the variability of LAI across different land 
uses and times of the year. Second, back trajectories are computed with monthly averaged wind 
data instead of hourly data. This restriction greatly simplifies data management and computation 
necessity. The case study for the state of Mato Grosso, for example, can be run on a personal 
computer. Formally, these two differences may include measurement error in our explanatory 
variable of forest count. Such measurement error can down bias the estimates, generating a 
lower bound for the effect of deforestation on rainfall.

The next step is to use this model combined with a counterfactual deforestation scenario to 
understand the impact of localized deforestation on rainfall. In this study, the author considered a 
scenario where the entirety of the Xingu’s Indigenous territories is deforested. This deforestation 
will impact the forest count variable and, consequently, rainfall. Which locations will be impacted 
depends on the back trajectories. Even though there is substantial variation across time in the 
paths of each trajectory, the average path is informative of atmospheric circulation patterns. 
Therefore, the average effect gives an expected impact of deforestation on rainfall.
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