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Abstract

We study Brazil's recent use of satellite technology to overcome law enforcement

shortcomings resulting from weak institutional environments. DETER is a system

that processes satellite imagery and issues near-real-time deforestation alerts to

target environmental enforcement in the Amazon. We propose a novel

instrumental variable approach for estimating enforcement's impact on

deforestation. Clouds limiting DETER's capacity to detect clearings serve as a

source of exogenous variation for the presence of environmental authorities.

Findings indicate that monitoring and enforcement e�ectively curbed

deforestation. Results are not driven by the displacement of illegal activity into

neighboring areas, and hold across several robustness checks.
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1. Introduction

Greenhouse gas (GHG) emissions, the key driver of anthropogenic climate

change, imply global externalities (Stern, 2008; Nordhaus, 2019). Although most

of the growth in emissions over the coming decades is expected to originate in

developing countries, its impact will be felt worldwide (Wolfram et al., 2012;

Greenstone and Jack, 2015). As the threat of climate change looms nearer, the

world's well-being increasingly depends on developing countries' capacity to

successfully enact and enforce environmental policies to reduce emissions

(Greenstone and Hanna, 2014; Greenstone and Jack, 2015). Yet, weak institutions,

which have long been barriers to policy implementation in developing countries,

often limit e�ective enforcement (Banerjee et al., 2008; Du�o et al., 2013; Ashraf

et al., 2016). With the bulk of research on climate change and associated policy

focused on developed economies, little is actually known about the e�ects and

workings of environmental policy enforcement where it currently matters most

(Burke et al., 2016).

This paper assesses the e�ectiveness of an environmental policy that was

enacted in and enforced by Brazil, a developing country with great potential to

contribute to GHG emissions reductions. It explores a unique setting in which the

innovative use of remote sensing technology was paramount in overcoming

limitations imposed by the country's weak institutional environment. Speci�cally,

we investigate if environmental law enforcement that was targeted using a

pioneering satellite-based monitoring system e�ectively reduced Brazilian Amazon

deforestation.

Brazil plays a prominent role in the global �ght against climate change.

Extending over an area nearly half the size of continental Europe, the Brazilian

Amazon is a vital carbon sink. In the early 2000s, at a time when almost a �fth of

global GHG emissions originated from the (mostly tropical) forestry sector, Brazil

stood out as the country that cleared most tropical forest area in both absolute

and relative terms (IPCC, 2007; Hansen and DeFries, 2004; Hansen et al., 2008).

As the protection of tropical forests rose to the top of the global environmental

policy agenda (Burgess et al., 2012), Brazil responded to rising international

pressures by launching a conservation action plan aimed at combating Amazon

deforestation. Within less than a decade, Amazon forest clearing rates fell by

nearly 85% (INPE, 2017).

Strengthening command and control was central to the action plan's strategy,

not least because the vast majority of Amazon clearings are illegal. The

cornerstone of this strategy was the implementation of the Real-Time System for

Detection of Deforestation (DETER), a satellite-based system that provides

near-constant surveillance of deforestation activity throughout the full extent of

the Brazilian Amazon. Upon detecting a change in tropical forest cover, DETER
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issues a georeferenced deforestation alert signaling areas in need of immediate

attention, which then serves to target environmental law enforcement. In Brazil,

the ability to provide a timely response is a crucial part of an e�ective strategy to

inhibit deforestation, because the country's institutional setup is such that

environmental law enforcers can apply more binding penalties when catching

o�enders red-handed. This is particularly relevant in a context of frail property

rights, widespread illegality, and acute lawlessness, all of which characterize the

Brazilian Amazon (Alston et al., 2000; Schmitt, 2015; Fetzer and Marden, 2017;

Mueller, 2018). In this context, DETER was a major leap forward in Amazon

enforcement capacity, allowing environmental authorities to better identify, more

closely monitor, and more quickly act upon areas being illegally deforested.

Brazil's experience with satellite-based monitoring to combat Amazon

deforestation therefore o�ers a unique opportunity for empirical assessment. It not

only provides evidence on the e�ectiveness of enforcing environmental policy of

great international salience in a developing country, but also sheds light on how

technology can be used to leverage state capacity and tackle challenges inherent to

weak institutional environments. Developing countries, in particular, stand to

bene�t from the technology's potential to bring oversight across regions often

deemed too large, remote, or unsafe for the ground presence of law enforcement

personnel.2

The relationship between law enforcement and criminal activity is

characterized by strong endogeneity, so isolating a causal e�ect is an empirically

challenging task (Levitt, 1997; Di Tella and Schargrodsky, 2004; Draca et al., 2011;

Chal�n and McCrary, 2017). In this paper, we build on an empirical setting

exclusive to the Brazilian Amazon to propose a novel instrumental variable for

environmental law enforcement. Our core argument is as follows. Cloud coverage

blocks visibility in satellite imagery and thereby limits DETER's capacity to

detect changes in land cover patterns. Because the system issues no deforestation

alerts for areas covered by clouds, enforcement personnel are less likely to be

allocated to these areas. We argue � and provide supporting empirical evidence

� that, controlling for relevant weather controls, DETER cloud coverage serves as

a valid instrument for environmental law enforcement in the Brazilian Amazon.

We explore this exogenous source of variation in law enforcement using a 2006

through 2016 panel of Amazon municipalities to recover two-stage least squares

(2SLS) estimates of the impact of enforcement on deforestation, conditional on a

host of controls, as well as on municipality and year �xed e�ects. First-stage

2UNOSAT, a United Nations initiative, o�ers a collection of examples for the use of remote
sensing technology in risk zones: damage assessment in the Gaza Strip, Iraq, Nepal, Syria, and
Yemen; post-disaster monitoring in Haiti and Pakistan; and tracking of refugee camps in Syria to
coordinate humanitarian support (UNITAR, 2016, 2019).
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results corroborate that municipalities with greater DETER cloud coverage in a

given year see a signi�cantly reduced presence of law enforcement that year, as

proxied by the total number of deforestation-related �nes issued in that

municipality by the environmental law enforcement authority. Fines are a good

proxy for environmental law enforcement in this setting, in which most clearings

are illegal, because �nes are issued both as standalone penalties and alongside

more severe penalties for environmental infractions. They therefore serve as a

means of capturing that law enforcement was present in that speci�c locality.

Second-stage results indicate that monitoring and law enforcement were e�ective

in curbing Amazon deforestation. This �nding holds across a series of robustness

exercises accounting for potentially relevant di�erences at baseline, varying sample

composition, and alternative controls. Results further suggest that the estimated

impact was sizable: on average, reducing monitoring and law enforcement by half

increases municipal deforestation by an estimated 44%. This is particularly timely

considering that the 2020 budget originally presented by the Brazilian Federal

Government proposes cutting back on �nancial support for environmental

monitoring and law enforcement by up to 50%.

We discuss two possible explanations for this e�ect in light of the changes

introduced by the new monitoring system. Improved targeting of law enforcement

may have deterred deforestation by causing potential o�enders to update their

beliefs about their chance of getting caught and, thus, their expected costs from

engaging in the illegal activity. Alternatively, enforcement action leading to the

loss of capital goods used in forest clearing may have reduced potential o�enders'

ability to commit future o�enses. The exercise does not, however, reveal the

underlying mechanisms for the estimated impact.

The analysis also investigates whether the monitoring and law enforcement

e�orts that locally curbed deforestation had additional, albeit unintended,

consequences. We �nd no evidence to support that local reductions in forest

clearings were driven by leakage of tropical deforestation activity into neighboring

areas, nor do we �nd evidence that local agricultural production was negatively

a�ected by the presence of law enforcement. In fact, if anything, municipalities

that saw a greater presence of environmental law enforcement in a given year

exhibited improved agricultural outcomes the following year. We speculate that

this might be driven by the increased presence of law enforcement contributing to

an improved institutional and productive environment.

This paper speaks to di�erent strands of the economic literature. First, it

contributes to a burgeoning literature on the enforcement of environmental

regulation in developing countries. Environmental regulation has long been

assessed in terms of both policy e�ectiveness and impacts on socioeconomic

outcomes, but almost exclusively within the context of developed nations
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(Greenstone, 2002; Chay and Greenstone, 2005; Gray and Shimshack, 2011; Keiser

and Shapiro, 2019). A smaller, but recently growing, number of studies address the

topic in the context of developing countries, focusing mostly on regulation aimed

at reducing air and water pollution (Greenstone and Hanna, 2014; Tanaka, 2015).

Greenstone and Hanna (2014) stress the need for further research on the

enforcement of environmental regulation in developing countries, since empirical

�ndings from developed nations can seldom be extended to developing ones, which

typically have very di�erent institutional environments. This is, perhaps, where

our paper makes its greatest contribution, as it provides insight into how a

developing nation pioneered the use of technology to leverage its capacity to

enforce environmental regulation with a potential for impact that extends far

beyond its national borders. After all, although �ghting tropical forest clearings

might not be a policy priority in all developing nations, Amazon deforestation has

global climate consequences, and Brazil is currently the only country that can

address it at scale.

Second, the analysis relates to a broader literature on the determinants of

tropical deforestation (Pfa�, 1999; Chomitz and Thomas, 2003; Burgess et al.,

2012; Souza-Rodrigues, 2019), as well as to a narrower literature dedicated to the

assessment of potential policy drivers of the 2000s Brazilian Amazon deforestation

slowdown (Hargrave and Kis-Katos, 2013; Assunção et al., 2015, 2019a,b; Burgess

et al., 2019). Although several works in the latter literature have documented that

policies signi�cantly contributed to reduce Amazon clearing rates, none have

focused on estimating the impact of environmental monitoring and law

enforcement e�orts, despite their central role in the action plan.3 To the best of

our knowledge, this is the �rst empirical evaluation of environmental monitoring

and law enforcement that adequately addresses known endogeneity between illegal

deforestation and the presence of law enforcers in the Brazilian Amazon.

Finally, the paper also speaks to the police and crime literature, which has long

sought to disentangle the causal impact of law enforcement on illegal activity

(Chal�n and McCrary, 2017). Authors have explored several alternative sources of

exogenous variation in police presence, ranging from electoral cycles (Levitt, 1997;

McCrary, 2002; Levitt, 2002) to terrorist attacks (Di Tella and Schargrodsky, 2004;

Klick and Tabarrok, 2005; Draca et al., 2011), and have, more recently, even

experimented with randomized deployment of hot-spot policing (Blattman et al.,

2019). This analysis contributes to the �eld by assessing the impact of law

enforcement on criminal activity within an empirical setting that is not

context-speci�c, but rather encompasses the full extent of the geographical area

3Hargrave and Kis-Katos (2013) �nd a negative relationship between municipal �ne density and
deforestation in the Brazilian Amazon, but do not explicitly account for endogeneity between law
enforcement and forest clearings.
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subject to the illegal activity. Thus, no additional assumptions or extrapolations

are needed to draw conclusions about the e�ectiveness of enforcement in this

setting.

The rest of the paper is organized as follows. Section 2 describes the

institutional context regarding Brazilian Amazon deforestation, as well as

associated environmental monitoring and law enforcement. Section 3 details the

empirical strategy used to estimate the e�ect of law enforcement on deforestation.

Section 4 describes the data and provides descriptive statistics. Section 5 presents

and discusses the main results, and explores potential leakage e�ects and policy

costs. Section 6 provides a series of robustness checks. Section 7 concludes with

policy implications.

2. Institutional Context

This section presents a contextual overview of Brazilian Amazon deforestation,

focusing on the three elements that are most necessary to understand law

enforcement's potential for impact in this setting. It starts with a characterization

of deforestation activity since the early 2000s, which occurred primarily as a means

of clearing the land for non-forest uses. Because this activity was mostly illegal, it

was subject to law enforcement action. The section therefore follows with a

description of how environmental law enforcement targeting deforestation evolved

over recent decades, particularly after the introduction of satellite-based

monitoring of Amazon forest cover. It closes with a discussion about the role the

novel monitoring system played in enhancing enforcement capacity, largely because

it allowed enforcement authorities to provide a more timely response to infractions.

In being able to more quickly detect and thereby reach sites of recent deforestation

activity, law enforcers had a greater chance of catching o�enders red-handed and,

thus, of applying more binding penalties.

2.1. Amazon Deforestation

At the beginning of the 21st century, Brazil stood out as the country that cleared

most tropical forest, both in absolute area and relative to its year-2000 forest cover

(Hansen et al., 2008). By 2004, deforested area totaled over 600 thousand km2,

nearly 15% of the country's original Amazon forest area (INPE, 2017). There are

two aspects of Brazilian Amazon deforestation over the last two decades that are

central to this paper: (i) it was largely an illegal practice; and (ii) its primary goal

was to clear areas for non-forest land uses, and not to extract timber.

In Brazil, removing native vegetation is only legal if the clearing of a speci�c area

has been duly authorized by a government environmental authority. Authorizations

can only be granted for areas within designated lands, which encompass private

landholdings and public lands assigned either to protection or to agrarian reform
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settlements.4 Private landholders must also comply with the Brazilian Forest Code,

which sets legal guidelines for conversion and protection of native vegetation inside

private properties. The Forest Code is particularly restrictive for properties in the

Amazon, capping legal deforestation at no more than 20% of total property area,

and further requiring landholders to preserve areas of permanent protection, such

as riparian forests.5 Clearing forest in undesignated lands (public areas that have

not been assigned to a speci�c use) is always illegal. Currently available data on

Amazon deforestation do not allow legal clearings to be distinguished from illegal

ones. However, descriptive and anecdotal evidence, brie�y summarized in what

follows, corroborate the general consensus that forest clearing in the region is mostly

illegal.6

The Brazilian Amazon covers an area of approximately 4.2 million km2.

Undesignated lands, where all clearings are illegal, extend over an estimated

700 thousand km2 (Azevedo-Ramos and Moutinho, 2018). An additional

2.1 million km2 are under protection, as either indigenous lands or protected areas

(CNUC, 2018; FUNAI, 2018). Because clearing forest within protected Amazon

territory is either entirely forbidden or subject to stringent requirements, it is

practically analogous to being illegal. The remaining 1.4 million km2 are either

private landholdings or agrarian reform settlements, both of which must comply

with conservation requirements established in the Brazilian Forest Code. While

clearings inside properties can be legal, property-level assessments reveal very poor

compliance with environmental regulation and the Forest Code in the Amazon

(Michalski et al., 2010; Godar et al., 2012; Börner et al., 2014). Forest clearings in

non-compliant properties are carried out in irregular circumstances and are

therefore also illegal. In light of this, although the data on Amazon deforestation

used in this paper may include legal clearings, it is safe to assume that this

amounts to only a small fraction of total cleared area.

In addition to having been mostly illegal, Amazon deforestation since the early

2000s occurred primarily as a means to clear land for alternative non-forest uses.

The two leading drivers of clear-cut deforestation (total removal of forest biomass)

in the Brazilian Amazon are agricultural conversion and illegal land grabbing. The

former is re�ected in the pattern of land use within the stock of deforested areas:

pasture occupies 63% and cropland 6% of cleared Amazon areas (INPE & Embrapa,

2016).7 The latter is a symptom of a long history of fragile property rights in the

4Speci�c regulations determining requirements and procedures for legal deforestation vary across
land tenure categories.

5See Chiavari and Lopes (2015) for an overview of the Brazilian Forest Code.
6Representatives of the Brazilian Ministry of the Environment and the federal environmental

police authority have stated, in informal conversations, that over 90% of Amazon forest clearings
within the past two decades were illegal.

7The remaining cleared area is covered by forest regrowth (23%), or a mix of other uses (8%),
including urban and mining areas.
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region, where public forest areas are often cleared as a means of illegally claiming

ownership over the land (Alston et al., 2000; Alston and Mueller, 2010; Fetzer and

Marden, 2017; Mueller, 2018; Azevedo-Ramos and Moutinho, 2018). Occupied areas

are typically held for speculative purposes. The key implication of a pattern of forest

clearing for agricultural conversion and land grabbing is spatial permanence. As land

itself is the main input in both practices, it is unlikely that recently deforested areas

in the Amazon are immediately abandoned.8

Combined, these two aspects of Amazon deforestation suggest there is room for

law enforcement to a�ect forest clearing practices. Illegal activities are, by nature,

the central target of law enforcement e�orts. Moreover, because deforested areas in

the Amazon are not quickly abandoned, enforcement o�cers have a non-negligible

chance of identifying the o�enders who are responsible for the illegal clearing. In

this sense, spatial permanence contributes to enforcement's capacity to attribute

responsibility for the environmental infraction. In the remainder of this section, we

discuss how, in spite of this, law enforcement was regarded as having only a very

limited capacity to impact Amazon deforestation. This was largely because the

severity of penalties that can be applied as punishment for deforestation in Brazil

depends on the timing of the enforcement response. It was not until the adoption

of a novel satellite-based monitoring system that the Brazilian environmental law

enforcement authority was able to provide a timely response. This system essentially

introduced what spatial permanence alone could not guarantee: the ability to catch

o�enders red-handed and, hence, impose binding penalties.

2.2. Environmental Monitoring and Law Enforcement

During the 1980s and 1990s, administrative sanctions were regarded as having

little capacity to inhibit environmental o�enders (Schmitt, 2015). The enactment

of the 1998 Law of Environmental Crimes (Brasil, 1998) brought regulatory

stability to the investigation and prosecution of environmental violations by

providing clearer de�nitions of infractions, as well as setting legal directives for the

application of administrative and penal sanctions. In the Amazon, this law was

enforced by the Brazilian Institute for the Environment and Renewable Natural

Resources (Ibama), an executive branch of the Brazilian Ministry of the

Environment. Ibama is responsible for environmental monitoring and law

enforcement at the federal level, operating as the national police authority in the

investigation of environmental infractions and application of administrative

sanctions.

8In contrast, logging is an inherently mobile practice. Although logging has been associated with
tropical forest loss, timber extraction in the Amazon is performed selectively to target high-value
trees and avoid the high costs of clearing large areas covered with tropical vegetation (Angelsen
and Kaimowitz, 1999; Hargrave and Kis-Katos, 2013; Chimelli and Soares, 2017). This typically
results in forest degradation (partial removal of forest biomass), not clear-cut deforestation.

8



Although the participation of Amazon states in environmental management has

grown since the 1990s, Ibama still holds a large and central role in carrying out

command and control policy in the region. In addition to its headquarters in the

Brazilian capital of Brasília, the institute holds several regional o�ces in the

Amazon to support its �eld operations. Yet, given the sheer magnitude of the

Brazilian Amazon, Ibama's enforcement capacity largely hinges on its ability to

accurately detect and target environmental infractions. Through the very early

2000s, targeting was mostly based on strategic intelligence Ibama collected, and

complemented by anonymous reports of forest clearing activity received via a hot

line. In this setting, enforcement capacity would clearly bene�t from remote

monitoring technology capable of placing large forest areas under regular

surveillance. At the time, however, the available technology was limited to air

vehicles, such as helicopters, which o�ered only a relatively short range of action,

and still put Ibama o�cers at great personal risk.

Conditions for environmental monitoring and law enforcement in the Amazon

drastically changed with the enactment of Brazil's Action Plan for the Prevention

and Control of Deforestation in the Legal Amazon (PPCDAm). Launched in 2004,

the action plan inaugurated a novel approach towards combating tropical

deforestation in Brazil. It integrated actions across di�erent government

institutions and proposed new procedures for monitoring, environmental control,

and territorial management. Because Amazon deforestation was known to be

mostly illegal, strengthening command and control policy was the action plan's

tactical-operational priority, and adopting high-frequency remote monitoring of

forest clearing activity was its pivotal endeavor. Developed by the Brazilian

Institute for Space Research (INPE), DETER was a satellite-based system that

regularly collected and processed georeferenced imagery on Amazon land cover to

detect forest loss. DETER used optical imagery from the MODIS sensor on the

Terra satellite, which had a spatial resolution of 250m and a daily revisit rate for

the full extent of the Brazilian Amazon. Figure 1 portrays how DETER captured

deforestation using this imagery. The system classi�ed land cover seen on

satellite-based pictures, distinguishing between areas that were covered by

vegetation and those that were not. Images from two di�erent points in time for

the same location were compared to identify recent changes in forest cover, which

were regarded as potential forest clearing hot spots. Once detected, each hot spot

was associated with a georeferenced deforestation alert marking the area in need of

immediate attention, as shown in Figure 2.
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DETER was created speci�cally to support Ibama's law enforcement e�orts.9

Deforestation alerts served as the basis for targeting ground operations in which

law enforcement o�cers visited alert sites and, upon �nding evidence of illegal

clearing activity, applied administrative sanction. Brazilian law allowed o�cers to

apply several di�erent penalties as punishment for the same infraction. In light of

this, �nes were the most commonly used administrative sanction � law

enforcement o�cers would typically issue a �ne for every environmental infraction

they detected, whether or not they also applied other sanctions for the same

infraction. Fines were not, however, the most severe form of punishment

environmental o�enders potentially faced. Some of the stricter penalties for illegal

Amazon deforestation included the setting of economic embargoes (which obstruct

access to rural credit) and the seizure/destruction of products and equipment

associated with forest clearing. Combined, administrative sanctions imposed a

high �nancial burden on o�enders both directly (via �ne payment, loss of

product/equipment) and indirectly (via restricted access to credit, foregone

production, legal fees). O�enders could also face civil and criminal charges, in

addition to administrative ones. In this setting, although �nes were not the most

severe sanction available, they were the most common one, being applied both as

standalone penalties and alongside other forms of punishment. This supports the

use of �nes as proxies for the presence of environmental law enforcement.

The remote monitoring system represented a major leap forward in Amazon

monitoring capacity, but su�ered from an important technical limitation: it could

not detect land cover patterns beneath clouds. This is a common limitation of

systems that use optical imagery � in the presence of clouds, images show the clouds

themselves, not the land beneath them. This pattern is apparent in Figure 2, which

illustrates how deforestation alerts were typically located in uncovered areas. The

inability to detect clearings beneath clouds, which signi�cantly limited monitoring

capacity, serves as the basis for this paper's identi�cation strategy (see Section 3).

2.3. The Importance of a Timely Response

From an environmental law enforcement perspective, DETER was

groundbreaking. It not only allowed the enforcement authority to spot illegal

activity throughout the entire Amazon, but it did so with unprecedented speed.

This timing element was critical in boosting law enforcement's potential for

impact. Prior to the activation of DETER, it was extremely di�cult for law

enforcement o�cers to locate and access new deforestation hot spots in a timely

manner, since the identi�cation of new clearings essentially relied on either

9Although the satellite used in DETER provided daily observations for every region of the
Brazilian Amazon, the system aggregated data into biweekly alert maps through the early 2010s.
In 2011, INPE started processing imagery on a daily basis, providing Ibama with near-real-time
information on deforestation activity every weekday.
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Ibama's capacity to accurately anticipate spatial deforestation patterns, or reports

received via its hot line. By the time o�cers reached deforested areas, it was often

too late to apply the more severe � and, thus, more binding � sanctions. Even if

o�cers were able to correctly identify and locate the responsible parties, which is

not a trivial task in a setting rife with insecure property rights (Alston et al., 2000;

Schmitt, 2015; Mueller, 2018), their capacity to impose the most costly penalties

ultimately depended on their capacity to catch o�enders red-handed. Consider, as

an example, the seizure and destruction of equipment used for clearing. If law

enforcement o�cers �nd heavy machinery, like tractors, on-site in a deforestation

hot spot, they can in�ict an immediate and severe �nancial loss on the o�ender by

seizing and destroying it. Expensive capital goods were not usually left unused in

deforested areas once clearing was completed, so seizure/destruction could only be

resorted to when o�cers interrupted o�enders mid-clearing. DETER essentially

increased the probability of such caught-in-the-act operations.

In light of this, the adoption of near-real-time satellite-based monitoring of forest

loss was particularly salient. Since its implementation in 2004, DETER has served

as the main targeting tool for Amazon law enforcement. By allowing Ibama to

quickly locate and act upon areas a�icted by recent deforestation, it increased law

enforcement's capacity to catch o�enders red-handed, and thereby enhanced the

potential for the application of binding sanctions.

3. Empirical Strategy

This paper's central empirical challenge is to adequately address the endogeneity

that exists in the relationship between environmental law enforcement and illegal

deforestation. In the context of the Brazilian Amazon, this endogeneity can be

brie�y stated as follows. On the one hand, the presence of law enforcement is

intuitively expected to negatively impact illegal forest clearings by either inhibiting

potential o�enders or reducing their capacity to commit future o�enses; on the other

hand, law enforcers are knowingly allocated, at least in part, based on the actual

occurrence of clearings. As we only observe an equilibrium situation, an estimator

that does not adequately account for reverse causality will be biased. To address the

possible upward bias in ordinary least squares (OLS) estimators, our estimation must

tackle simultaneity in addition to the usual concerns regarding omitted variables.

This section proposes an instrumental variable strategy to estimate the causal e�ect

of law enforcement on Amazon deforestation.

Recall from Section 2 that, because DETER is unable to detect land cover

patterns beneath clouds, it does not issue alerts for any given area when cloud

coverage is limiting visibility in that area. Alerts serve as the basis for targeting

Amazon law enforcement, so law enforcers are less likely to be allocated to areas

that are blocked from view by clouds in the monitoring system, even if forest
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clearing is occurring in these areas. This suggests that, after the adoption of the

satellite-based monitoring system, the presence of environmental law enforcement

in the Brazilian Amazon should be at least partially determined by DETER cloud

coverage. If this is, in fact, the case � and we will provide empirical evidence that

supports this claim at the municipal level (see Section 5.1) � average annual

DETER cloud coverage is arguably a source of exogenous variation in the presence

of environmental law enforcement at the municipal level. Hence, we propose using

DETER cloud coverage as an instrument for environmental law enforcement in the

Brazilian Amazon.

The instrument's validity hinges on it being uncorrelated with the error term in

the equation that regresses deforestation on law enforcement, conditional on

observable variables. There are two scenarios in which this condition could be

violated in our empirical setup: (i) if DETER cloud coverage correlates with other

geographical characteristics that, in turn, correlate with forest clearings; and (ii) if

DETER cloud coverage correlates with the outcome of interest, namely

deforestation. The availability of relevant observable variables helps make the case

for the instrument's validity.

We address the potential correlation between geographical characteristics and

forest clearings using a combination of available data and �xed e�ects. Rainfall and

temperature are an obvious source of concern here, as both are expected to correlate

with clouds via weather phenomena. They may also correlate with deforestation,

either as determinants of forest clearing decisions, or as ecological consequences

of forest loss (Nobre et al., 1991; Negri et al., 2004; Aragão et al., 2008; Chomitz

and Thomas, 2003; Bagley et al., 2014). Although delving into the speci�cs of this

relationship is out of the scope of this paper, the empirical strategy accounts for

it by using precipitation and temperature data to control for municipal weather.

Another source of concern in validating the instrument's exclusion restriction is

the potential correlation between average cloud coverage and soil type. Biophysical

conditions that determine soil type could be correlated with local weather conditions,

and soil quality, which a�ects agricultural outcomes, could in�uence forest clearing

decisions in the Brazilian Amazon. The inclusion of location �xed e�ects helps

mitigate this concern. All speci�cations therefore include municipal precipitation

and temperature controls, as well as municipality �xed e�ects.

Data availability also serves to address the potential correlation between

DETER cloud coverage and the outcome of interest. Deforestation data come from

INPE's Project for Monitoring Deforestation in the Legal Amazon (PRODES),

which uses satellite-based optical imagery to annually map deforested areas (see

Section 4.1 for a detailed description). Although both PRODES and DETER use

satellite imagery to detect changes in Amazon land cover, PRODES' goal is to

measure deforestation more accurately only once per year, not monitor it
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frequently. PRODES data are constructed using information collected from a

di�erent satellite that provides images at higher resolutions. While DETER uses

daily imagery all year round, PRODES selects only the best images from the

Amazon dry season to minimize cloud coverage and maximize visibility of land

surfaces. PRODES is thus less likely to su�er from limited visibility, but if present

in selected imagery, clouds will still block land cover from view. In light of this, a

sound empirical strategy must ensure that the potential correlation between the

proposed instrument, DETER cloud coverage, and the key dependent variable,

PRODES deforestation, is adequately accounted for. Fortunately, PRODES data

are released containing information on areas that were blocked from view, so all

speci�cations include controls for these areas. Coe�cients are therefore estimated

considering only DETER cloud coverage that is orthogonal to PRODES

non-observable areas.

Having controlled for municipal precipitation, temperature, and PRODES

satellite visibility, as well as for municipality �xed e�ects, we argue that the only

remaining channel through which DETER cloud coverage could be correlated with

deforestation in the Brazilian Amazon is that of environmental law enforcement

allocation. The empirical analysis starts by testing the relationship between law

enforcement and DETER cloud coverage. The OLS estimation equation is given

by:

LawEnforcementi,t = βDETERcloudsi,t +
∑
k

γk ~Xi,t + αi + φt + εi,t (1)

where LawEnforcementi,t is proxied by the total number of deforestation-related

�nes issued in municipality i and year t; DETERcloudsi,t is average DETER cloud

coverage in municipality i and year t; ~Xi,t is a vector of k municipality-level controls

that includes precipitation, temperature, and PRODES satellite visibility; αi is the

municipality �xed e�ect; φt is the year �xed e�ect; and εi,t is the idiosyncratic error.

We stress that total �ne count is used only as a proxy for law enforcement, not as a

penalty of interest in and of itself. Because environmental �nes can be issued both

as standalone penalties and alongside other sanctions, if law enforcers �nd evidence

of illegal deforestation, they will almost certainly issue a �ne (see Section 2.2).

Moreover, considering that the vast majority of forest clearings happening during

the sample period were illegal (see Section 2.1), and that the adoption of DETER

enabled a more timely law enforcement response (see Section 2.3), law enforcement's

presence in deforestation hot spots were very likely accompanied by the issuing of

�nes. As �nes may be issued for environmental infractions other than forest clearing,

we restrict �ne count to those that speci�cally refer to deforestation. For simplicity,

we refer to deforestation-related �nes simply as �nes throughout the paper.

If the inclusion restriction represented in Equation (1) and the aforementioned
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exclusion restrictions hold, an instrumental variable setup can be used to capture the

impact of law enforcement (instrumented by DETER cloud coverage) on Amazon

deforestation. The 2SLS second-stage estimation equation is given by:

Deforestationi,t = δLawEnforcementi,t−1 +
∑
k

θk ~Xi,t + ψi + λt + ξi,t (2)

where Deforestationi,t is a normalized measure of total deforested area in

municipality i and year t; LawEnforcementi,t−1 is the total number of

deforestation-related �nes issued in municipality i and year t − 1, and is

instrumented by DETERcloudsi,t−1; ~Xi,t is the vector of k municipality-level

controls; ψi is the municipality �xed e�ect; λt is the year �xed e�ect; and ξi,t is the

idiosyncratic error. Estimates are robust to heteroskedasticity, and standard errors

are clustered at the municipality level in all speci�cations, making them robust to

serial correlation (Bertrand et al., 2004).

The use of a one-year lag for the enforcement variable is based on the literature

that documents a lagged response of illegal activity to enhanced enforcement

(Levitt, 1997; Shimshack and Ward, 2005; Chal�n and McCrary, 2017). A one-year

lag seems plausible in a setting with DETER-based monitoring and annual

deforestation data. For a given area, increased forest clearing in year t likely

triggers the concurrent issuing of DETER alerts associated with that area, thereby

increasing the presence of law enforcement via targeted allocation that same

year t. If potential o�enders perceive the increased presence of law enforcement in

year t as a higher probability of getting caught and sanctioned in year t + 1, they

may choose to not engage in the illegal activity the following year, consequently

contributing to reduce deforestation in year t + 1. We therefore test whether

lagged environmental law enforcement a�ected current deforestation. To capture

DETER cloud coverage that is correlated with the allocation of law enforcement,

but uncorrelated with deforestation through all other channels, we include

one-year lags for precipitation and temperature controls, but current measures for

all other controls.

In all speci�cations, municipality �xed e�ects control for potentially relevant

municipality-speci�c characteristics a�ecting both deforestation activity and law

enforcement e�orts, and year �xed e�ects account for aggregate shocks. In

addition to the variables added to support the validity of the exclusion restriction

(precipitation, temperature, and PRODES satellite visibility), Xi,t in Equation (2)

also includes agricultural commodity price controls, which have been shown to be

relevant drivers of tropical deforestation (Angelsen and Kaimowitz, 1999; Hargrave

and Kis-Katos, 2013; Assunção et al., 2015). Conservation policy e�orts

implemented alongside improvements in monitoring and law enforcement may have

also a�ected deforestation outcomes during the sample period. We discuss these
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policies in more detail and include available policy controls in robustness exercises

(see Section 6.3), but refrain from adding them to benchmark speci�cations due to

endogeneity concerns.

4. Data

This paper's empirical analysis uses a 2006 through 2016 municipality-by-year

panel dataset built entirely from publicly available data. The sample includes all

municipalities that are either partially or entirely located in the Amazon biome,

that exhibited variation in forest cover during this period, and for which

deforestation data were available.10 The variation in forest cover criteria enables

the use of municipality �xed e�ects. This eliminates 25 municipalities that did not

contain a signi�cant amount of forest cover at baseline, as evidenced by a 2%

average ratio of forest to municipal area (INPE, 2017). The non-missing data for

deforestation criteria eliminates seven municipalities that lie only marginally

within the far northeast region of the Legal Amazon, such that there is no relevant

coverage of their respective territories in Amazon satellite systems. The �nal

sample comprises 521 municipalities.11

4.1. Deforestation

Since 1988, INPE annually tracks the loss of tropical vegetation in the Brazilian

Amazon via PRODES. The system uses optical images from Landsat class satellites,

with a spatial resolution of 20 to 30 meters, to detect changes in tropical forest

cover throughout the full extent of the Brazilian Amazon. PRODES only accounts

for clear-cut deforestation, which it de�nes as the near-complete or complete loss of

tropical vegetation. Deforested areas in PRODES therefore do not include the loss of

degraded forests, or non-tropical vegetation. The system provides annual data, but

because PRODES typically uses imagery from the Amazon dry season to minimize

cloud coverage in imagery, these data do not refer to a calendar (January through

December) year. Rather, they refer to what we call the �PRODES year�: for a given

year t, PRODES measures deforestation that happened from August of year t − 1

through July of year t. Unless otherwise stated, years referenced throughout the

analysis refer to PRODES years, not calendar ones.

PRODES was created to map and measure tropical deforestation increments,

10The Legal Amazon refers to a geopolitical territorial division, whereas the Amazon biome refers
to an ecological one. Figure 2 maps the two regions. Although DETER monitoring covers the full
extent of the Legal Amazon, 97% of the area deforested in the Amazon since the adoption of the
remote monitoring system occurred within the Amazon biome (INPE, 2017). This is consistent
with the fact that, at the time DETER was launched, tropical forest covered less than 5% of
non-biome Legal Amazon territory (INPE, 2017).

11Municipal boundaries in the analysis refer to the 2007 administrative division from the
Brazilian Institute for Geography and Statistics (IBGE).
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which are used to calculate an Amazon-wide annual deforestation rate.12 When an

area is identi�ed as deforested in PRODES imagery, it is classi�ed as part of that

year's deforestation increment; as of the following year, it is classi�ed as accumulated

deforestation and is incorporated into what is known as the �PRODES deforestation

mask�. Once part of this mask, an area is never reclassi�ed. Thus, by construction,

PRODES can neither detect deforestation of areas covered by tropical regeneration,

nor include this type of forest clearing in its calculation of the annual deforestation

rate. The PRODES deforestation increment is publicly released at an annual basis

both as an Amazon-wide georeferenced dataset and as panel containing municipal

aggregates.

Municipality-level deforestation increments from PRODES serve as the basis

for the construction of our main outcome of interest. These increments are

normalized to account for the large variation in municipality size � the sample

standard deviation is 16 thousand km2. The two benchmark normalization

procedures use the natural log and the inverse hyperbolic sine transformations.13

Some exercises explore alternative normalization procedures, based on municipality

size and across-time average deforestation (see Section 5.3).

4.2. Law Enforcement

Ideally, we would like to use deployment data to capture the presence of

environmental law enforcement in the Brazilian Amazon. However, to the best of

our knowledge, there is neither an existing dataset that contains this information,

nor a means of accurately compiling the data from scratch. We therefore use the

total number of deforestation-related �nes issued by Ibama in each municipality

and year as proxy for the presence of law enforcement at the municipal level. Our

interest lies in the proxy for law enforcement, not in �nes as penalties in and of

themselves. They are a good proxy for the presence of law enforcement in the

Brazilian Amazon, because they are issued both as standalone penalties and

alongside more severe punishments (see Section 2.2). In a context in which the

vast majority of forest clearings are illegal (see Section 2.1), �nes serve as an

indication that law enforcement was both present at the site of an environmental

infraction and able to hold someone accountable for it.14

12Deforestation increments encompass all visible deforested areas; the deforestation rate is closely
related to the increment, but it further accounts for cleared forest areas that were partially or
entirely blocked from view during remote sensing. INPE (2013) provides a detailed account of
PRODES methodology and rate estimation details.

13The log normalization is implemented as ln(deforesti,t + 0.01), where deforesti,t is the
deforestation increment in km2 for municipality i and year t, to allow for the occurrence of
observations with null deforestation in the analysis. Note that non-null deforestation is greater
than 0.01 km2 for all observations in the raw data.

14The knowingly low collection rates for environmental �nes in the Brazilian Amazon (Schmitt,
2015) do not invalidate their use as proxies for the presence of law enforcement in the Brazilian
Amazon, which essentially depends on the issuing � not the payment � of �nes.
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Ibama holds a public electronic record of all environmental �nes issued in the

country, with �ne-level information on the type of infraction (enabling the distinction

between di�erent types of environmental occurrences), as well as its issue date (day,

month, and year) and location (municipality), among other administrative details.

Using this record, we build a panel containing the total count of deforestation-related

�nes issued in each municipality and each year.

4.3. DETER Cloud Coverage

Although DETER provides law enforcement with high-frequency information

on deforestation hot spots, the system's cloud coverage data are aggregated into

monthly georeferenced datasets for public release. In these datasets, areas that

are covered by clouds were blocked from view throughout the entire month (see

Figure 2).15 When visibility is at least partial, the monthly data show exactly which

areas were covered by clouds. When visibility is too precarious throughout the entire

month to derive any information about land cover, however, no data is produced

for that month � we follow INPE's recommendation and assume DETER cloud

coverage to be complete in this case. We use these spatial data to calculate the

monthly ratio of cloud coverage to municipal area, and average these municipality-

level ratios across each year to derive our instrument.

Although the earliest monthly DETER data are from the 2004 calendar year, the

DETER system remained in experimental phase halfway through the 2005 calendar

year. The benchmark sample therefore starts in 2006 (using data from August 2005

through July 2006) and follows through 2016, the latest year for which data were

available at the time the dataset was built. We use DETER cloud coverage data

from the early experimental phase in robustness exercises (see Section 6.2).

4.4. Controls

The benchmark set of controls contains variables that account for local

weather, PRODES satellite visibility, and agricultural commodity prices. First,

weather controls include measures of precipitation and temperature to address the

potential correlation between deforestation and regional microclimate (see

Section 3). This set of controls is critical to the validity of DETER cloud coverage

as an instrument for law enforcement, as it mitigates concerns regarding the

potential correlation between cloud coverage, local geographic characteristics, and

deforestation. We build our control variables from monthly gridded data on total

precipitation (Matsuura and Willmott, 2017b) and average air temperature

(Matsuura and Willmott, 2017a) interpolated to a 0.5◦ by 0.5◦ grid resolution.

15There are a few months for which the raw data contains biweekly, as opposed to monthly,
information on DETER cloud coverage. In these cases, we follow INPE's recommendation and
intersect the biweekly spatial data to identify areas that were blocked from view throughout the
entire month.
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Using this grid, we construct monthly measures for precipitation and temperature

in each municipality as follows: (i) for a municipality that intersects with at least

one grid node, we calculate total precipitation and average temperature across

nodes; (ii) for a municipality that does not intersect with any grid nodes, we

identify nodes that intersect with its 30km bu�er and calculate average

precipitation and average temperature across nodes; and (iii) for a municipality

that neither intersects nor has its 30km bu�er intersect with any grid nodes, we

identify nodes that intersect with its 60km bu�er and calculate average

precipitation and average temperature across nodes.16 Monthly values are then

added (precipitation) or averaged (temperature) to construct municipality-level

annual measures.

Second, satellite visibility controls account for areas that are blocked from view

in satellite imagery. Clouds, shadows cast by clouds, and smoke from forest �res

can all a�ect PRODES visibility. INPE publicly discloses annual municipality-level

information on these obstructions, classifying them as �cloud coverage� or

�non-observable areas� (the latter includes both shadows cast by clouds and smoke

from forest �res).17 We include the two ratios of PRODES obstructed to municipal

area in all regressions to control for measurement error, as well as to address

potential correlation between PRODES deforestation and the DETER cloud

coverage instrument.

Finally, the last set of controls account for agricultural commodity prices. As

these prices are endogenous to local agricultural production and thereby also to

local deforestation activity, we follow Assunção et al. (2015) to construct output

price series that capture exogenous variations in the demand for agricultural

commodities produced locally. The authors show that commodity prices recorded

by the Agriculture and Supply Secretariat of the State of Paraná (SEAB-PR)

closely correlates with average local agricultural prices for Amazon

municipalities.18 Select commodity prices cover beef cattle, as well as soybean,

cassava, rice, corn, and sugarcane to capture incentives for both cattle ranching

and crop farming activities.19 For each of the six commodities, we build an index

of real prices for the �rst and second semester of each calendar year.20 We start by

de�ating monthly nominal prices to year 2000 Brazilian currency, and averaging

16Bu�er distance is based on the grid size, with 30km being approximately equivalent to half
the distance between grid nodes.

17In DETER raw data, all visual obstructions are recorded as cloud coverage.
18Paraná is a non-Amazon state located in the far south of Brazil.
19Soybean, cassava, rice, and corn systematically account for more than 84% of the planted area

in sample municipalities during the sample period. Although not present in the Amazon, sugarcane
is also included to address concerns regarding the expansion of sugarcane-based ethanol biofuel
production in Brazil over the past decades.

20We use January through July of year t as the �rst semester of year t to more closely match
the breaks in PRODES years, which end in July. August through December of year t make up the
second semester of year t.
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the de�ated monthly prices across semesters. To introduce cross-sectional variation

in the commodity price series, we weight the prices using a measure of that

commodity's relevance in each municipality in years immediately preceding the

sample period. The weighted real price for each commodity is therefore given by:

PWc,i,st = Pc,st ∗Wi,c (3)

where PWc,i,st is the weighted real price of commodity c in municipality i and

semester/year st; PPc,st is the real price of commodity c in semester/year t; and

Wi,c is the municipality/commodity-speci�c weight. For crops, the weight is given

by the 2004 through 2005 average ratio of farmland to municipal area for crop c in

municipality i, using annual data from Brazil's Municipal Crop Production Survey

(PAM/IBGE). For beef cattle, the weight is given by the 2004 through 2005

average ratio of heads of cattle to municipal area in municipality i, using data from

Brazil's Municipal Livestock Survey (PPM/IBGE). The set of agricultural

commodity price controls for year t includes prices for the �rst and second

semesters of calendar year t − 1, as well as prices for the �rst semester of calendar

year t.

4.5. Descriptive Statistics

Table 1 provides descriptive statistics for the analysis' main variables. It shows

that deforestation, law enforcement, and DETER cloud coverage exhibit

substantial variation both across and within sample years. The downward trend in

mean deforestation over time is consistent with a context in which forest clearing

was slowing down in the Brazilian Amazon as a whole. Figure 3 portrays the

deforestation slowdown alongside the trajectory for total annual �ne count,

o�ering some insight into the endogeneity that exists among the two. While the

sharp increase in the number of �nes issued through 2008 could be expected to

have contributed to the observed reduction in deforestation, lower forest clearing

rates imply a lower incidence of illegal clearings and, thus, lower �ne counts over

time. The proposed IV strategy aims at disentangling these e�ects to isolate the

impact of law enforcement on Amazon deforestation.

5. Results

This section presents the analysis' main results. It starts by providing empirical

evidence that DETER cloud coverage signi�cantly in�uenced environmental law

enforcement in the Brazilian Amazon. Drawing on this evidence as support for

using cloud coverage as an instrument for enforcement in this speci�c setting, it

then follows with the benchmark results, which indicate that environmental law

enforcement e�ectively curbed tropical deforestation. The section also explores
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regional impacts of local enforcement, and looks into potential costs of enforcing

environmental law in the Amazon.

5.1. Law Enforcement and Deforestation

To be a valid instrument for environmental law enforcement in the Brazilian

Amazon, DETER cloud coverage must systematically a�ect enforcement outcomes.

We test whether this condition holds using the speci�cation from Equation (1), in

which the total number of �nes issued in each municipality and year serves as a

proxy for law enforcement. This exercise mirrors the �rst-stage regression of the

proposed instrumental variable (IV) strategy, but allows for the gradual inclusion

of relevant controls. Table 2 presents estimated OLS coe�cients. Column 1 starts

with the univariate regression; column 2 adds weather controls (precipitation and

temperature); column 3 adds satellite visibility controls (PRODES cloud coverage

and other non-observable areas); and column 4 adds municipality and year �xed

e�ects, as well as the set of agricultural commodity prices. The coe�cient of

interest � the e�ect of DETER cloud coverage on law enforcement � remains

negative and statistically signi�cant across speci�cations. Thus, for any given

Amazon municipality, years with greater DETER cloud coverage also saw laxer

environmental law enforcement, as proxied by a smaller number of �nes. These

results support the validity of the inclusion restriction imposed by the proposed IV

strategy.

Having provided empirical evidence that DETER cloud coverage systematically

a�ects environmental law enforcement targeting deforestation in the Brazilian

Amazon, we now explore this relationship in the IV speci�cation from

Equation (2). Table 3 presents estimated coe�cients using both OLS and 2SLS

estimators, as well as two alternative normalizations for the dependent variable

(two additional normalizations are discussed in Section 5.3). All speci�cations use

the full set of �xed e�ects (municipality, year) and controls (weather, satellite

visibility, agricultural commodity prices). Our main interest lies in the 2SLS

coe�cients (Panel A, even columns), which isolate the e�ect of law enforcement on

deforestation. OLS coe�cients (Panel A, odd columns) are reported for

comparative purposes only. They are all statistically insigni�cant and

point-estimates are virtually zero, suggesting that law enforcement does not

signi�cantly a�ect deforestation. This conclusion, however, does not hold, since

OLS yields biased estimators in the presence of reverse causality. In this setting,

because the OLS estimator is expected to be upward biased, the null coe�cients

reported in Table 3 suggest that estimation strategies that adequately tackle

endogeneity should yield smaller (negative) point estimates.

The proposed IV strategy was designed to address reverse causality between

law enforcement and deforestation. Second-stage 2SLS coe�cients (Table 3,

Panel A) are all negative and statistically signi�cant, indicating that the presence
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of law enforcement in any given Amazon municipality and year led to a reduction

in total forest area cleared in that municipality the following year. This pattern

holds across normalizations for the dependent variable, so �ndings do not appear

to be driven by the choice of normalization procedure. We report second-stage

results for the remaining exercises using both log and inverse hyperbolic sine

transformations, and refer back to columns 2 and 4 as their respective benchmark

speci�cations. The log-level speci�cation provides a sense of the magnitude of the

e�ect. On average, reducing monitoring and law enforcement by half increases

municipal deforestation by an estimated 44% (= 1 − e(9.87/2)×0.0743). First-stage

2SLS results (Table 3, Panel B) support the use of DETER cloud coverage as an

instrument for law enforcement. In years with greater cloud coverage,

municipalities systematically saw a signi�cantly smaller number of �nes.

Estimated coe�cients show that, on average, an increase of one sample standard

deviation in DETER cloud coverage reduced the presence of law enforcement at

the municipal level by nearly 25% of the sample mean. These �ndings validate the

inclusion restriction. Finally, with a �rst-stage F-statistic greater than 10,

instrument strength is not a source of concern (Stock et al., 2002).

Results from Table 3 capture the paper's main �nding: IV estimation provides

empirical evidence that environmental law enforcement e�ectively curbed tropical

deforestation in the Brazilian Amazon from 2006 through 2016. The adoption of the

near-real-time monitoring system allowed law enforcement to more quickly detect

and react to illegal forest clearings, notably increasing enforcers' capacity to catch

o�enders red-handed (see Sections 2.2 and 2.3). As enforcement became more salient

to o�enders, who then faced a higher chance of getting caught and punished, they

updated their beliefs about the expected costs of engaging in the illegal activity.

The change in the perceived cost/bene�t of deforestation is the driving force behind

a deterrence mechanism � in light of higher expected costs, potential o�enders

rationally choose to refrain from engaging in the illegal activity. Additionally, in

being able to more quickly locate recent clearings, law enforcement o�cers could

also reach the clearing sites faster. This increased the chance that equipment used

for deforestation were still on-site and could be apprehended. The loss of such

capital goods, which were typically expensive and hard to replace, limited o�enders'

capacity to deforest in the near future. Our empirical strategy does not reveal which

of these underlying mechanisms drove the estimated impact of law enforcement of

deforestation, but DETER enhanced the potential for both. Hence, although we are

not able to disentangle the two channels in the analysis, both operate in the same

direction and likely contribute to our empirical results.

5.2. Spillovers

Thus far, the �nding that monitoring and law enforcement were e�ective at

curbing Amazon forest clearing refers solely to the direct policy impact, estimated
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based on the e�ect of local (municipal) enforcement on local deforestation. Yet,

local interventions may also have had regional impacts. On the one hand, if law

enforcement o�cers were more present in a given municipality, clearings might have

fallen locally due to a redistribution of deforestation activity towards municipalities

where enforcement was not as salient. In this scenario, enforcement would displace

illegal clearings, but not actually contain them at the aggregate level. On the other

hand, the presence of enforcement o�cers in a given municipality might have led

potential o�enders in the whole region to update their beliefs about the probability

of being caught. In this case, local enforcement's impact on deforestation might not

have been restricted to the local level, having had a more widespread regional e�ect.

To investigate whether leakage or contagion occurred, we assess the e�ect of

municipal law enforcement on deforestation outcomes within the broader region of

a municipality's neighborhood. The 2SLS second-stage estimation equation builds

on Equation (2), but is now given by:

Deforestation∂i,t = δLawEnforcementi,t−1 +
∑
m

υm ~Xi,t+

+
∑
n

µn
~W∂i,t + ψi + λt + ξi,t

(4)

where ∂i denotes a variable de�ned at the neighborhood level, such that

Deforestation∂i,t is a normalized measure of total deforested area in municipality

i's neighborhood and year t; ~Xi,t is a vector of m municipality-level controls

covering precipitation and temperature; and ~W∂i,t is a vector of n

neighborhood-level controls covering average precipitation, average temperature,

total PRODES clouds and other non-observable areas, average agricultural

commodity prices, and average DETER cloud coverage.21 All other terms are

de�ned as in Equation (2). Deforestation outcomes for the central municipality are

not included in this speci�cation's outcome of interest.

Table 4 presents estimated coe�cients using the following three alternative

de�nitions for a municipality's neighborhood: (i) all municipalities that share a

border (are contiguous) with the central municipality (columns 1 and 4); (ii) the

three municipalities that are nearest to the central municipality, where proximity is

based on the linear distance between municipalities' centroids (columns 2 and 5);

and (iii) all municipalities whose centroid lies within a 100km bu�er from the

central municipality (columns 3 and 6).22 Although the benchmark sample was

21Average neighborhood DETER cloud coverage is included to account for potential correlation
between cloud coverage in the central municipality and cloud coverage in its neighborhood, which
could a�ect enforcement outcomes in both the central municipality and its neighborhood.

22To account for spatial decay across larger distances, the construction of deforestation outcomes
for the bu�er-based de�nition weighs deforested area in each neighboring municipality by a factor
of edistance×(−ln2

50 ), such that deforestation in a neighbor that is 50km away receives a weight of
0.5.
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preserved to ensure comparability across neighborhood and benchmark results,

some observations were lost due to limitations in data availability.23

The evidence appears to support that contagion, not leakage, occurred.

Estimated coe�cients are systematically negative and statistically signi�cant,

suggesting that the presence of law enforcers in a given municipality helped contain

forest clearings not only locally (within that municipality), but also regionally

(within its neighborhood). These results further indicate that the benchmark

estimated local impact of law enforcement on deforestation was not driven by

leakage of forest clearing activity into surrounding areas. Amazon monitoring and

law enforcement may therefore have had positive regional spillovers, but further

investigation is needed to attest to its magnitude and spatial characteristics.

Finding that leakage did not occur at a regional level is consistent with the

institutional context of Amazon monitoring and law enforcement (see Section 2).

Indeed, the very nature of the DETER system inhibits displacement of

deforestation activity. Continuous universal surveillance means that no area is

subject to less monitoring at any given time. As such, potential o�enders cannot

reasonably attribute a smaller chance of getting caught to any one area. Still,

because DETER's inability to detect land cover patterns beneath clouds is public

information, one might posit that o�enders could concentrate clearing activity in

areas more prone to cloud coverage. We argue this is an unlikely story. Amazon

cloud coverage is an inherently variable phenomenon, as evidenced by the

descriptive statistics in Table 1 and illustrated in Figure 2. High within-year

variation in cloud coverage means that clearings in most of the Amazon region are

not systematically hidden from view in the high-frequency monitoring system. If

an o�ender were to base his clearing decision on clouds, once they clear and

deforestation is detected by DETER, his activity could be targeted by law

enforcement. This is particularly relevant in a setting in which most deforestation

occurs to clear land for non-forest uses. Moreover, considering that clearing

tropical forest is both time-consuming and expensive, o�enders do not typically

leave recently cleared areas in the very short term � they need time to use the

land to collect the bene�ts from deforestation.

That being said, although short-term variation in cloud coverage would not

su�ce to evade monitoring, it signi�cantly a�ected the presence of law

enforcement. To reconcile these apparently contradictory notions, it is important

to recall two key points from the institutional context for Amazon monitoring and

law enforcement (see Section 2). First, the new monitoring system shed light on

23For the shared borders and proximity-based neighborhoods, one municipality is dropped from
the sample because deforestation data are missing for all of its neighbors. For the bu�er-based
neighborhood, forty-six municipalities are dropped from the sample because their 100km bu�ers
do not intersect with any municipality centroids.
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forest clearing activity that had remained hitherto unknown to law enforcement

authorities. As such, it had the capacity to reveal several new deforestation hot

spots and, over time, allow targeting of these areas. Second, cloud coverage played

a key role in determining how quickly law enforcement could reach new clearing

sites. This in�uenced enforcers' capacity to apply more or less binding

punishments, which, in turn, fed into o�enders' updated beliefs about the costs of

engaging in illegal clearings. Combined, these arguments point towards DETER

cloud coverage being su�ciently variable to be a poor long-term cover for illegal

forest clearings, but also su�ciently salient to signi�cantly impact the

on-the-ground presence of law enforcement.

5.3. Policy Costs

Monitoring and law enforcement appear to have been e�ective at curbing

deforestation in the Brazilian Amazon � but at what price? We explore two

potential dimensions: a direct cost, and an opportunity cost.

We start with an investigation of whether monitoring and law enforcement

e�orts were a cost-e�ective way of protecting the Amazon. We perform a

back-of-the-envelope cost-bene�t calculation to arrive at a simpli�ed answer.

Annual budgets for Ibama (USD 560 million) and INPE (USD 125 million) provide

an estimate for the total cost of both running the monitoring system and

implementing law enforcement.24 This is certainly an overestimate of the actual

cost of Amazon monitoring and law enforcement e�orts, because Ibama and INPE

were not exclusively dedicated to this endeavor.

To quantify the bene�ts of preserving the forest, we revisit our benchmark

speci�cation using a linear transformation to normalize deforestation.25 Table 5

presents estimated 2SLS coe�cients for two alternative linear normalizations: the

annual municipal deforestation increment as a share of municipal area (column 1);

and the annual municipal deforestation increment as a share of the 2002 through

2016 mean municipal deforestation increment (column 2). Coe�cients are

consistent with those from Table 3, reinforcing that our benchmark results are not

being driven by the choice of normalization procedure. These coe�cients provide a

measure of the average e�ect on deforestation of increasing the presence of law

enforcement in any given municipality. We use these estimates to simulate what

would have happened in two hypothetical scenarios: (i) one in which Amazon

monitoring and law enforcement have been entirely shut down, and (ii) another

one in which the novel satellite-based monitoring system was never adopted. We

build these scenarios empirically by setting the total number of �nes in each

24Information on annual budgets is not available for every sample year, so we resort to the actual
budgets in 2011 for both institutes as an approximation.

25Linearity is needed to enable the derivation of the expected value for deforestation in the
proposed simulation (see Appendix A).
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municipality to zero or pre-DETER (2002 through 2004 average �ne count) levels,

respectively, and simulating municipal deforestation outcomes under these

conditions. Figure 4 depicts total sample observed and simulated deforested areas,

showing that both scenarios yield systematically larger deforestation.26 From the

�rst scenario, if monitoring and law enforcement had been entirely shut down, the

Amazon would have seen 338 thousand km2 of cleared areas � almost �ve times

what was actually observed during the sample period. The second hypothetical

scenario sheds light on the relative contribution of DETER. If the new

satellite-based monitoring system had never been developed and law enforcement

had sustained its pre-DETER pattern, total sample deforestation would have

amounted to 279 thousand km2. Combined, these exercises point towards the

importance of correctly allocating � and not just intensifying � enforcement

e�orts. Accurate targeting of illegal activity was a crucial part of e�ective law

enforcement in the Brazilian Amazon.

Based on results from the �rst hypothetical scenario, monitoring and law

enforcement e�orts avoided the clearing of an average of 27 thousand km2 of

tropical forest per year. This is equivalent to avoiding the emission of nearly

1 billion tCO2 per year.27 Again, this is certainly an underestimate of the true

value of protecting the forest, as it focuses strictly on avoided emissions, and

doesn't account for several other environmental services the forest provides, such

as protection of biodiversity and hydrological resources (Stern, 2008; Watson et al.,

2018). Comparing the estimated annual costs (USD 685 million) and bene�ts

(1 billion tCO2), we arrive at a break-even price of USD 0.69/tCO2. Carbon prices

are currently rising, with about half of emissions now covered by carbon pricing

initiatives priced at over USD 10/tCO2e (World Bank et al., 2017) � well above

the break-even price calculated in our setting. Hence, the bene�ts of protecting the

forest more than compensate the costs of implementing Amazon monitoring and

law enforcement e�orts. This is particularly striking considering that our estimates

only capture a lower bound for this potential gain, as costs are overestimated and

bene�ts are underestimated. Overall, this exercise suggests that monitoring and

law enforcement were a cost-e�ective way of curbing Amazon deforestation.

Despite being �nancially viable, the Amazon monitoring and law enforcement

strategy might still have had relevant opportunity costs. There is an ongoing debate

among academics and policymakers regarding potential tensions between economic

growth and the conservation of natural resources. These concepts, however, need not

be mutually exclusive. Indeed, there is both anecdotal and causal evidence of cases

26Reported simulation outcomes are based on the municipal area normalization, but results are
analogous for the mean-based normalization and are available from the authors upon request.

27Conversion based on a factor of 10,000 tC/km2 (36,700 tCO2/km2), as determined by the
Brazilian Ministry of the Environment (MMA, 2011).
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in which environmental quality improved in tandem with economic development

(Arrow et al., 1995; Stern, 2004; Foster and Rosenzweig, 2003). Still, considering

that agricultural land covers a large share of deforested areas in the Amazon (see

Section 2.1), interventions that a�ect forest clearing practices might also in�uence

agricultural production.

In light of this, we explore the proposed IV strategy to investigate whether

law enforcement a�ected local agricultural production. Table 6 reports estimated

coe�cients for two di�erent measures of production: (i) municipal gross domestic

product (GDP) for the agricultural sector (Panel A, columns 1 and 2), which includes

both livestock- and crop-based activities; and (ii) municipal value of crop production

(Panel A, columns 3 and 4).28 Due to missing raw data on municipal value of crop

production for select municipalities and years, speci�cations that use crop value

as the dependent variable (columns 3 and 4) are estimated using an unbalanced

panel. Speci�cations that do not include agricultural price controls capture the

impact of law enforcement on value outcomes (columns 1 and 3), whereas those

that do include agricultural price controls capture the impact on quantum outcomes

(columns 2 and 4).

Results indicate that monitoring and law enforcement did not harm

agricultural production. If anything, they had a signi�cant positive impact on

production, with both value and quantum outcomes systematically improving in

municipalities with greater presence of law enforcement. Combined with our

benchmark results, this �nding indicates that monitoring and law enforcement

e�ectively contained Amazon deforestation without jeopardizing local agricultural

production. Looking at a broader historical and economic context for the Brazilian

Amazon can be insightful when interpreting these results. The region's long

history of insecure property rights has been associated with severe land tenure

uncertainty, particularly regarding the illegal squatting of both public and private

lands, and violent rural con�ict (Alston et al., 2000; Araujo et al., 2009; Chiavari

et al., 2016; Fetzer and Marden, 2017; Mueller, 2018). This contributes to

widespread informality in production. We speculate that, in this setting, the

increased presence of law enforcement may have helped boost production by

improving the local institutional environment. Alternatively, stricter monitoring

and law enforcement may have created an incentive for producers to increase

productivity, as opposed to expanding production along extensive margins.

Although this exercise sheds light on a currently salient debate about

conservation policy and economic development, an important caveat is in place.

By construction, the analysis' dependent variables only measure formal

28The municipal GDP series is available from IBGE; the municipal value of crop production
series is available in PAM/IBGE. Although IBGE also conducts an annual survey on livestock, it
provides no information on value of production for beef cattle.
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agricultural production, so results fail to capture potential impacts on informal

production. On the one hand, informal producers may have responded to law

enforcement by shifting from a low-productivity setup to a more productive one,

essentially compensating production that was lost at the extensive margin for that

gained at the intensive margin. On the other hand, they may have ceased to

produce entirely, with relevant consequences for individual or regional well-being.

An analysis capable of assessing these impacts � on the informal sector,

subsistence agriculture, and individual-level production � might yield di�erent

conclusions to those drawn from Table 6. To the best of our knowledge, no data is

currently available for conducting such analysis at scale.

6. Robustness Checks

The set of results presented in Section 5 indicate that the monitoring and law

enforcement strategy for combating Amazon deforestation e�ectively curbed tropical

clearings. In addition to its e�ectiveness, the policy does not appear to have had

negative collateral e�ects, neither displacing clearings to neighboring regions within

the Amazon, nor imposing unfavorable policy costs. We now subject this main

�nding to a series of robustness checks

6.1. Baseline Di�erences

The paper's identi�cation strategy partly depends on valid comparability

across municipalities after controlling for relevant observable characteristics and

municipality and year �xed e�ects. This comparability might not hold if included

controls and �xed e�ects do not adequately account for baseline di�erences that

set municipalities on di�erent deforestation paths. We consider three scenarios

where this might be a source of concern, and test whether results are robust to the

inclusion of scenario-speci�c linear time trends.

First, when the new monitoring system was implemented, remaining forest

cover varied signi�cantly across Amazon municipalities. Such variation could a�ect

deforestation trends, since the forest area available for clearing within a

municipality mechanically decreases with decreasing forest cover.29 To control for a

trend determined by baseline accumulated deforestation, the saturated robustness

speci�cation builds on the benchmark speci�cation from Equation (2), but also

includes an interaction between a linear year trend and accumulated deforested

area in 2003 (pre-DETER) as a share of municipal area. Second, deforestation

levels at baseline could be associated with forest clearing patterns during the

29In addition to being correlated with future deforestation increments, accumulated deforested
area might also correlate with local micro-climate (see Section 3). Thus, the robustness speci�cation
that controls for baseline accumulated deforested area also addresses concerns about the validity
of the exclusion restriction.
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sample period. If more dynamic municipalities in the Amazon have more intense

clearing activity and are thereby subject to greater deforestation pressures,

di�erences in current deforestation could determine di�erent clearing trends over

time. Whereas the �rst scenario looks at the stock of deforested areas, this second

scenario considers the �ow of deforestation at baseline. Its robustness speci�cation

is analogous to that of the �rst scenario, but includes an interaction between a

linear year trend and the 2003 (pre-DETER) deforestation increment.30 Third, the

baseline distribution of law enforcement could impact local deforestation trends,

particularly in a setting in which enforcement has been shown to e�ectively

contain forest clearings. The last robustness speci�cation in this exercise is, again,

analogous to the two previous ones, but includes an interaction between a linear

year trend and the 2002 through 2004 average municipal �ne count.

Table 7 presents estimated 2SLS coe�cients for the three speci�cations, and

also replicates benchmark results for comparison. If the paper's main �ndings had

been driven by the convergence in deforestation activity between municipalities

with either varying stocks of deforested areas, di�erent economic dynamics and

deforestation pressures, or shifts in the distribution of law enforcement, adding the

linear time trends to the benchmark speci�cation should have returned

insigni�cant estimated coe�cients for law enforcement. Instead, second-stage

coe�cients remain negative and statistically signi�cant across speci�cations, and

�rst-stage results hold in terms of coe�cient sign and signi�cance, as well as of

instrument strength. Table 7 therefore attests to the robustness of monitoring and

law enforcement's capacity to have e�ectively curbed Amazon deforestation.

6.2. Sample Composition

Spatially, construction of the benchmark sample entails virtually no selection

other than deforestation data availability and time-series variation (see Section 4).

Moreover, it includes all Amazon biome municipalities meeting this selection

criteria, so it has universal coverage of the relevant geographical region. The

benchmark sample contains a high degree of variability in municipal forest cover,

including municipalities with a relatively small share of forest at baseline.

Deforestation dynamics speci�c to regions with little remaining forest cover could

be driving the paper's main �ndings, and thereby contributing to a

misinterpretation of results. More intense clearing activity in any place and time

mechanically implies that less forest is available for clearing in that same place in

the future. Thus, if increased clearing is also associated with greater presence of

law enforcement in a given municipality, the estimated impact of lagged

enforcement on current deforestation could have been driven, at least in part, by

30The test for the second scenario also captures potential e�ects from baseline di�erences in
infrastructure across municipalities, such as road networks, that might determine future local
forest clearing dynamics.
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this mechanical reduction in the availability of forest areas. To mitigate concerns

about mechanical reductions in cleared areas, this exercise assesses the impact of

law enforcement on deforestation strictly in municipalities that contained a

relatively large amount of forest cover at baseline. Table 8 presents estimated

2SLS coe�cients for the benchmark speci�cation using a restricted sample of

municipalities containing an above-median ratio of forest to municipal area at

baseline. Results are robust to the sample restriction, with estimated coe�cients

remaining negative and statistically signi�cant across speci�cations.

Temporally, construction of the benchmark sample also entails little selection.

Although the earliest DETER data refer to 2005, the DETER system remained in

testing phase until 2006, when it became fully operational (see Section 4.3). The

benchmark sample therefore starts in 2006 and follows through 2016, the latest year

for which data were available at the time of dataset construction. As a second test of

robustness to sample composition, Table 8 presents estimated 2SLS coe�cients for

the benchmark speci�cation using an extended sample that covers the 2005 through

2016 period. Despite noisier DETER data for 2005, results indicate that the impact

of law enforcement on deforestation remains robust to the inclusion of information

from DETER's test phase.

6.3. Control Variables

The last set of robustness checks tests whether the paper's main results are

sensitive to changes in the benchmark control variables. First, we consider the

inclusion of additional controls for Amazon conservation policies that were

implemented alongside monitoring and law enforcement. Two such policies stand

out due to their close relationship with observed levels of deforestation: the

expansion and targeted allocation of protected areas, and the listing of priority

municipalities. As part of the novel action plan to tackle Amazon deforestation,

Brazil introduced a new siting strategy for protected territory. In addition to

maintaining ecological and biological criteria, siting was henceforth also

determined based on regional deforestation pressures. New protected areas were

meant to serve as shields to advancing deforestation, so protection tended to

increase in regions where forest clearing was particularly intense (Gandour,

2018).31 Furthermore, as of 2008, Brazil annually published a list of Amazon

municipalities with a recent history of intense forest clearing activity. Listed

municipalities were classi�ed as in need of priority action to combat illegal

deforestation, and could only be unlisted upon demonstrating signi�cant

reductions in forest clearing. Priority municipalities could be subjected to

31Protection has been shown to be an e�ective way of locally holding back deforestation in the
Amazon, but there is still an ongoing debate about the magnitude of this e�ect at more aggregate
levels, particularly considering the scope for spatial leakage (Nolte et al., 2013; Pfa� et al., 2014;
Gandour, 2018; Herrera et al., 2019; Amin et al., 2019).
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di�erentiated monitoring and law enforcement strategies, as well as to stricter

administrative measures like harsher licensing requirements for private

landholdings and economic sanctions from players in commodity supply-chains.32

Both protected territory and priority municipalities policies might have a�ected

deforestation outcomes in sample municipalities.

Protected territory controls are built from georeferenced data on protected

areas provided by the Brazilian National Registry for Conservation Units (CNUC,

2018), as well as from georeferenced data on indigenous lands provided by the

Brazilian National Native Foundation and the Socio-Environmental Institute (ISA,

2016; FUNAI, 2018). These datasets contain information on the date each territory

was granted protection, enabling the construction of a spatial panel. Priority

municipality controls are built from information contained in each of the Ministry

of the Environment's annual listings of municipalities that were attributed priority

status or removed from the blacklist. Table 9 presents estimated 2SLS coe�cients

for the benchmark speci�cation adding controls for protected territory (annual

ratio of protected to municipal area) and priority municipalities (annual indicator

of priority status). The positive and signi�cant coe�cient for protection likely

re�ects the practice of allocating protected areas in places heavily a�ected by

forest clearings. The coe�cient for priority municipalities is statistically

insigni�cant, suggesting that the e�ect of priority status on deforestation operates

via a law enforcement mechanism, as found by Assunção and Rocha (2019). The

impact of law enforcement on deforestation remains robust, and is even slightly

larger after the inclusion of the conservation policy controls.

Finally, in the last robustness exercise, we test whether the paper's main results

hold when using alternative weather controls. Precipitation and temperature are

specially relevant in this empirical setting, because they play a key role in ensuring

the instrument meets the necessary exclusion restriction (see Section 3). Weather

datasets compiled from information collected at ground stations can carry

inaccurate measures of actual weather, particularly in areas with low station

density like the Brazilian Amazon. Climate scientists have attempted to mitigate

this by using a variety of geographical interpolations to construct grid node-level

data from ground stations. Still, if these gridded datasets are sensitive to the

speci�c interpolation technique adopted in their construction, empirical results

derived using these datasets might, too, vary with the choice of weather data. The

economic literature typically addresses this concern by subjecting results to

robustness tests using alternative datasets for weather variables (Dell et al., 2014).

32A number of studies document that the policy contributed to reduce deforestation in listed
municipalities, but the literature is yet to reach a consensus about the mechanism through which
it operated (Arima et al., 2014; Cisneros et al., 2015; Assunção et al., 2019b; Assunção and Rocha,
2019).
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Table 10 presents estimated 2SLS coe�cients for the benchmark speci�cation

using di�erent combinations of benchmark and alternative datasets for precipitation

and temperature variables. The benchmark controls are constructed using monthly

average air temperature and total precipitation interpolated to a 0.5◦ by 0.5◦ grid

resolution (Matsuura and Willmott, 2017b,a). These datasets have been extensively

used in the economic literature both to evaluate the impact of weather variables on

economic outcomes, and to provide relevant precipitation and temperature controls

(Jones and Olken, 2010; Dell et al., 2012). The alternative datasets are both provided

by the National Oceanic and Atmospheric Administration (NOAA) from the U.S.

Department of Commerce. The Climate Prediction Center (CPC) dataset contains

daily information on precipitation and maximum/minimum temperature registered

by ground stations and interpolated to a 0.5◦ by 0.5◦ grid resolution (NOAA-CPC,

2018a; 2018b). The National Centers for Environmental Prediction (NCEP) dataset

contains monthly information on average precipitation derived from reanalysis and

recorded at a 2.5◦ by 2.5◦ grid resolution (NOAA-NCEP, 2019). Alternative weather

controls are constructed in the likeness of benchmark controls (see Section 4.4).

The table shows that the paper's main results were not driven by our choice our

benchmark weather datasets, with estimated coe�cients remaining robust in terms

of both magnitude and statistical signi�cance.

7. Final Comments

The analysis yields important policy implications. Results indicate that

monitoring and law enforcement e�orts were e�ective in curbing Amazon

deforestation, helping protect a substantial amount of tropical forest. The

magnitude of the estimated impact, combined with the favorable cost-bene�t

assessment, reinforce the case for maintaining and strengthening command and

control strategies to protect vegetation in settings with pervasive illegal

deforestation. Yet, the results also tell a broader story � one that is not restricted

to the monitoring of tropical forest clearings. This is a story of how a developing

country devised a new way of using technology in its favor, and thereby

signi�cantly leveraged its capacity to enforce environmental regulation in spite of

its weak institutional environment. At a time when the world's future well-being

largely hinges on developing countries' ability to enact and enforce e�ective

environmental regulation to tackle the threats associated with climate change

(Greenstone and Jack, 2015), Brazil's experience with satellite monitoring of

tropical forests serves as an encouraging example of how innovation can enhance

policy.
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A. Expected Value for Deforestation

Rewrite the benchmark speci�cation (Equation 2, Section 3) as:

yi,t = δLawEnforcementi,t−1 +
∑
k

θk ~Xi,t + ψi + λt + ξi,t, (5)

where yi,t is normalized deforestation. In a counterfactual scenario where law

enforcement is di�erent to that which was observed, the expected di�erence

between simulated (abbreviated as sim) and observed normalized deforestation is

given by:

E[yi,t|sim − yi,t] = δ̂LawEnforcementi,t−1|sim +
∑

k θ̂k
~Xi,t + ψi + λt +

−(δ̂LawEnforcementi,t−1 +
∑

k θ̂k
~Xi,t + ψi + λt)

= δ̂(LawEnforcementi,t−1|sim − LawEnforcementi,t−1).

For the linear transformation in which annual municipal deforestation (defi,t) is

divided by a municipality-speci�c constant (µi), this di�erence is given by:

E
[defi,t
µi

∣∣∣
sim
− defi,t

µi

]
= δ̂(LawEnforcementi,t−1|sim − LawEnforcementi,t−1)

E
[defi,t|sim − defi,t

µi

]
= δ̂(LawEnforcementi,t−1|sim − LawEnforcementi,t−1)

E[defi,t|sim − defi,t] = µi × δ̂(LawEnforcementi,t−1|sim − LawEnforcementi,t−1).
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Figures and Tables

Figure 1: How is Deforestation Detected in DETER Satellite Imagery?

Notes: The top and bottom images show satellite pictures of the same location recorded

at two di�erent moments in time � an earlier image (top) and a later one (bottom). Green

regions are covered by vegetation, while purple regions are not; the yellow outline marks

changes in land cover. The deforestation alert associated with this area carries the spatial

information that geographically locates it. Source: image from the Brazilian Institute for

the Environment and Renewable Natural Resources (Ibama).
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Figure 2: DETER Cloud Coverage and Deforestation Alerts

(a) 2011 January (b) 2011 April

(c) 2011 July (d) 2011 October

Notes: The maps display DETER cloud coverage and deforestation alerts for four sample

months. The Legal Amazon is a geopolitical administrative concept, and the Amazon

biome is an ecological one. Sources: DETER clouds and alerts from the Brazilian Institute

for Space Research (INPE); territorial divisions from the Brazilian Institute for Geography

and Statistics (IBGE).
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Figure 3: Descriptive Statistics: Amazon Deforestation and Fine Count

Notes: The graph displays total annual deforested area and total annual deforestation-

related �ne count for all sample municipalities. Sources: deforestation from the Brazilian

Institute for Space Research (INPE); �ne count from the Brazilian Institute for the

Environment and Renewable Natural Resources (Ibama).
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Figure 4: Simulation: Full Shutdown of Amazon Monitoring and Law Enforcement

Notes: The graph displays observed and simulated annual values for total sample

deforestation. The simulated trajectories refer to two hypothetical scenarios: (i) Amazon

monitoring and law enforcement were entirely shut down, and (ii) DETER was never

adopted. The simulations use estimated coe�cients from the speci�cation in Table 3

column 6, and set the total number of �nes as: (i) zero in all municipalities and years; or

(ii) the 2002 through 2004 (pre-DETER) average �ne count for each municipality and year.

Source: observed deforestation from the Brazilian Institute for Space Research (INPE).
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Table 1: Descriptive Statistics

full sample 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

deforestation
mean 14 20.55 21.63 24.76 11.76 11.71 10.54 8.21 10.08 9.54 11.54 13.68
sd 39.64 54.58 59.37 57.94 35.64 28.20 26.60 20.68 28.60 24.13 31.61 39.28

enforcement
mean 9.87 12.72 11.15 16.25 11.61 9.81 10.72 6.11 8.80 6.86 10.96 3.63
sd 28.25 26.85 23.85 37.27 32.74 23.25 26.73 16.19 30.91 24.36 41.01 13.15

DETER cloud coverage
mean 0.46 0.37 0.65 0.49 0.58 0.49 0.50 0.35 0.37 0.45 0.48 0.39
sd 0.23 0.06 0.16 0.23 0.23 0.25 0.20 0.20 0.21 0.27 0.24 0.27

PRODES cloud coverage
mean 664.3 376.33 568.60 441.75 434.12 827.65 557.99 585.36 1,237.18 783.31 487.27 1,007.75
sd 2,810.21 1,447.32 2,403.74 1,804.06 1,393.36 3,311.98 2,879.49 2,125.07 4,737.32 3,023.03 1,886.78 3,782.06

PRODES non-observable
mean 15.2 46.64 47.45 21.71 9.27 7.66 7.62 7.13 7.26 6.97 0.00 5.48
sd 135.5 261.91 262.33 231.46 37.93 36.02 35.82 34.19 33.90 34.03 0.00 33.05

precipitation
mean 6,962 7,493 7,057 7,414 7,393 6,524 7,084 6,911 7,034 7,164 6,678 5,825
sd 12,514 13,490 12,330 13,203 13,541 11,698 12,458 12,469 12,666 12,487 12,447 10,617

temperature
mean 26.2 26.03 26.23 25.81 26.00 26.52 26.21 26.12 26.20 25.96 26.21 26.91
sd 1.29 1.22 1.13 1.28 1.21 1.32 1.21 1.28 1.30 1.38 1.26 1.24

agricultural GDP
mean 55,189 23,078 26,833 34,213 35,401 40,197 54,310 63,100 76,261 76,308 81,703 95,676
sd 90,516 28,109 38,700 54,999 55,231 47,552 77,672 96,993 114,574 107,900 112,769 143,293

crop value
mean 46,307 17,020 21,611 30,906 30,062 28,583 40,721 48,576 56,797 64,510 78,419 92,232
sd 157,375 47,386 68,907 107,769 101,576 79,036 135,107 157,266 170,334 190,417 224,658 270,509

Notes: The table reports municipality-level means and standard deviations. Variable labels, units, and sources are as follows. Deforestation: km2, Project for Monitoring Deforestation
in the Legal Amazon (PRODES) from the Brazilian Institute for Space Research (INPE); enforcement: number of �nes, Brazilian Institute for the Environment and Renewable Natural
Resources (Ibama); DETER cloud coverage: ratio of cloud to municipal area, Real-Time System for Detection of Deforestation (DETER) from the Brazilian Institute for Space Research
(INPE); PRODES cloud coverage: km2, PRODES/INPE; PRODES non-observable: km2, PRODES/INPE; precipitation: mm, Matsuura and Willmott (2017b); temperature: ◦C,
Matsuura and Willmott (2017a); agricultural GDP: BRL1,000, Brazilian Institute for Geography and Statistics (IBGE); crop value: BRL1,000, Municipal Crop Production (PAM) from
IBGE. See Section 4 for details on variable construction.
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Table 2: OLS Regressions: DETER Cloud Coverage and Law Enforcement

(1) (2) (3) (4)

depvar: enforcement

DETER cloud coverage -8.1475*** -10.8186*** -8.5958*** -5.5320***
(2.2383) (2.5210) (2.1566) (2.0579)

precipitation 0.0005*** 0.0007*** 0.0001
(0.0002) (0.0002) (0.0003)

temperature -0.0056 0.1019 -1.9367*
(0.5296) (0.5178) (1.0289)

PRODES cloud coverage -0.0004 0.0011
(0.0023) (0.0013)

PRODES non-observable -0.0018*** 0.0003*
(0.0005) (0.0002)

R-squared 0.0046 0.0476 0.0688 0.0389
FE: muni & year no no no yes
controls: agricultural prices no no no yes

observations 5,731 5,731 5,731 5,731
municipalities 521 521 521 521

Notes: OLS coe�cients are estimated based on Equation (1) from Section 3. The total number
of �nes issued in each municipality and year serves as a proxy for law enforcement. The dataset
is a municipality-by-year panel covering the 2006 through 2016 period. The sample includes all
Amazon biome municipalities that exhibited variation in forest cover during the sample period
and for which deforestation data were available. Robust standard errors are clustered at the
municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.
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Table 3: IV Regressions: Law Enforcement and Deforestation

(1) (2) (3) (4)

Panel A: OLS and 2SLS, second-stage results

depvar: ln(deforest) depvar: IHS(deforest)

OLS 2SLS OLS 2SLS

enforcement, t-1 -0.0003 -0.0743** 0.0002 -0.0503***
(0.0006) (0.0290) (0.0006) (0.0177)

FE: muni & year yes yes yes yes
controls: full yes yes yes yes

observations 5,210 5,210 5,210 5,210
municipalities 521 521 521 521

Panel B: 2SLS, �rst-stage results

depvar: enforcement

2SLS

DETER cloud coverage -9.6628***
(2.5184)

precipitation -0.0004
(0.0003)

temperature -0.5530
(1.3285)

PRODES cloud coverage 0.0029
(0.0027)

PRODES non-observable 0.0002
(0.0001)

�rst-stage F-statistic 14.72

FE: muni & year yes
controls: agricultural prices yes

observations 5,210
municipalities 521

Notes: OLS and 2SLS coe�cients are estimated based on Equation (2) from Section 3.
Panel A presents OLS and second-stage 2SLS results; Panel B presents �rst-stage 2SLS
results. In Panel A, the normalization procedures for the dependent variables are: natural
log transformation (columns 1 and 2); and inverse hyperbolic sine transformation (columns 3
and 4). The total number of �nes issued in each municipality and year serves as a proxy for law
enforcement. The set of control variables contains: precipitation and temperature (weather);
PRODES cloud coverage and other non-observable areas (satellite visibility); and agricultural
commodity prices. The dataset is a municipality-by-year panel covering the 2006 through
2016 period. The sample includes all Amazon biome municipalities that exhibited variation in
forest cover during the sample period and for which deforestation data were available. Robust
standard errors are clustered at the municipality level. Signi�cance: *** p<0.01, ** p<0.05, *
p<0.10.

45



Table 4: IV Regressions: Law Enforcement and Deforestation Leakage

(1) (2) (3) (4) (5) (6)

Panel A: 2SLS, second-stage results

depvar: ln(deforest) depvar: IHS(deforest)

border nearest bu�er border nearest bu�er

enforcement, t-1 -0.0695*** -0.0775*** -0.0954*** -0.0687*** -0.0783*** -0.0915***
(0.0263) (0.0295) (0.0300) (0.0241) (0.0245) (0.0284)

FE: muni & year yes yes yes yes yes yes
controls: weather yes yes yes yes yes yes
neigh. controls: full yes yes yes yes yes yes

observations 5,200 5,200 4,750 5,200 5,200 4,750
municipalities 520 520 475 520 520 475

Panel B: 2SLS, �rst-stage results

depvar: enforcement

border nearest bu�er

DETER cloud coverage -8.4043*** -8.7812*** -8.9344***
(2.5992) (2.3795) (2.5920)

�rst-stage F-statistic 10.45 13.62 11.88

FE: muni & year yes yes yes
controls: weather yes yes yes
neigh. controls: full yes yes yes

observations 5,200 5,200 4,750
municipalities 520 520 475

Notes: 2SLS coe�cients are estimated based on Equation (4) from Section 5.2. Panel A presents second-stage results;
Panel B presents �rst-stage results. In Panel A, the normalization procedures for the dependent variables are: natural log
transformation (columns 1 through 3); and inverse hyperbolic sine transformation (columns 4 through 6). The total number
of �nes issued in each municipality and year serves as a proxy for law enforcement. A central municipality's neighborhood is
de�ned in one of three ways: (i) all municipalities that share a border (are contiguous) with the central municipality (columns 1
and 4); (ii) the three municipalities that are nearest to the central municipality, where proximity is based on the linear distance
between municipalities' centroids (columns 2 and 5); and (iii) all municipalities whose centroid lies within a 100km bu�er
from the central municipality (columns 3 and 6). The set of central municipality control variables contains: precipitation
and temperature (weather). The set of neighborhood control variables contains: average precipitation and temperature
(weather), total PRODES clouds and other non-observable areas (satellite visibility), average agricultural commodity prices,
and average DETER cloud coverage. The dataset is a municipality-by-year panel covering the 2006 through 2016 period. The
sample includes all Amazon biome municipalities that exhibited variation in forest cover during the sample period and for
which deforestation data were available (see Section 5.2 for details on varying numbers of observations across speci�cations).
Robust standard errors are clustered at the municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.
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Table 5: IV Regressions: Law Enforcement and Deforestation, Linear Normalizations for
Counterfactual Simulation

(1) (2)

Panel A: 2SLS, second-stage results

depvar: deforest/muni area depvar: deforest/mean

2SLS 2SLS

enforcement, t-1 -0.0244*** -0.0452**
(0.0093) (0.0176)

FE: muni & year yes yes
controls: full yes yes

observations 5,210 5,210
municipalities 521 521

Panel B: 2SLS, �rst-stage results

2SLS

DETER cloud coverage -9.6628***
(2.5184)

�rst-stage F-statistic 14.72

FE: muni & year yes
controls: agricultural prices yes

observations 5,210
municipalities 521

Notes: 2SLS coe�cients are estimated based on Equation (2) from Section 3. Panel A presents second-
stage 2SLS results; Panel B presents �rst-stage 2SLS results. In Panel A, the normalization procedures
for the dependent variables are: division by municipal area (column 1); and division by the mean
deforested area for 2002 through 2016 (column 2). The second-stage 2SLS coe�cient in column 1
should be interpreted as percentage points. The total number of �nes issued in each municipality and
year serves as a proxy for law enforcement. The set of control variables contains: precipitation and
temperature (weather); PRODES cloud coverage and other non-observable areas (satellite visibility);
and agricultural commodity prices. The dataset is a municipality-by-year panel covering the 2006
through 2016 period. The sample includes all Amazon biome municipalities that exhibited variation in
forest cover during the sample period and for which deforestation data were available. Robust standard
errors are clustered at the municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.
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Table 6: IV Regressions: Law Enforcement and Agricultural Production

(1) (2) (3) (4)

Panel A: 2SLS, second-stage results

depvar: ln(ag GDP) depvar: ln(crop value)

value quantum value quantum

enforcement, t-1 0.0306*** 0.0205*** 0.0468** 0.0413***
(0.0114) (0.0073) (0.0187) (0.0142)

FE: muni & year yes yes yes yes
controls: weather yes yes yes yes
controls: satellite visibility yes yes yes yes
controls: agricultural prices no yes no yes

observations 5,210 5,210 5,176 5,176
municipalities 521 521 520 520

Panel B: 2SLS, �rst-stage results

depvar: enforcement

value quantum value quantum

DETER cloud coverage -7.3473*** -9.6628*** -7.4746*** -9.8006***
(2.2322) (2.5184) (2.2335) (2.5264)

�rst-stage F-statistic 10.83 14.72 11.20 15.05

FE: muni & year yes yes yes yes
controls: weather yes yes yes yes
controls: satellite visibility yes yes yes yes
controls: agricultural prices no yes no yes

observations 5,210 5,210 5,176 5,176
municipalties 521 521 520 520

Notes: 2SLS coe�cients are estimated based on an adaptation of Equation (2) from Section 3,
in which agricultural outcomes replace deforestation as the dependent variable. Panel A presents
second-stage results; Panel B presents �rst-stage results. In Panel A, the normalization procedure
for the dependent variables is the natural log transformation. The total number of �nes issued in
each municipality and year serves as a proxy for law enforcement. The set of control variables
contains: precipitation and temperature (weather); PRODES cloud coverage and other non-
observable areas (satellite visibility); and agricultural commodity prices. Speci�cations that do not
include agricultural price controls capture value outcomes (columns 1 and 3), whereas those that
do include agricultural price controls capture quantum outcomes (columns 2 and 4). The dataset
is a municipality-by-year panel covering the 2006 through 2016 period. The sample includes all
Amazon biome municipalities that exhibited variation in forest cover during the sample period and
for which deforestation data were available. Due to missing raw data on municipal value of crop
production for select municipalities and years, speci�cations that use crop value as the dependent
variable (columns 3 and 4) are estimated using an unbalanced panel. Robust standard errors are
clustered at the municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.
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Table 7: Robustness Checks, IV Regressions: Baseline Municipal Di�erences

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: 2SLS, second-stage results

depvar: ln(deforest) depvar: IHS(deforest)

benchmark benchmark

enforcement, t-1 -0.0743** -0.1048*** -0.0805** -0.0690*** -0.0503*** -0.0665*** -0.0533*** -0.0458***
(0.0290) (0.0348) (0.0319) (0.0254) (0.0177) (0.0212) (0.0194) (0.0152)

FE: muni & year yes yes yes yes yes yes yes yes
controls: full yes yes yes yes yes yes yes yes

trends:
pre-DETER deforest accum. no yes no no no yes no no
pre-DETER deforest increm. no no yes no no no yes no
pre-DETER law enforcement no no no yes no no no yes

observations 5,210 5,210 5,210 5,210 5,210 5,210 5,210 5,210
municipalities 521 521 521 521 521 521 521 521

Panel B: 2SLS, �rst-stage results

depvar: enforcement

benchmark

DETER cloud coverage -9.6628*** -9.8723*** -9.0611*** -10.5289***
(2.5184) (2.5775) (2.4796) (2.4305)

�rst-stage F-statistic 14.72 14.67 13.35 18.77

FE: muni & year yes yes yes yes
controls: full yes yes yes yes

trends:
pre-DETER deforest accum. no yes no no
pre-DETER deforest increm. no no yes no
pre-DETER law enforcement no no no yes

observations 5,210 5,210 5,210 5,210
municipalities 521 521 521 521

Notes: 2SLS coe�cients are estimated based on an adaptation of Equation (2) from Section 3, in which linear time trends are included as additional controls. Panel A
presents second-stage results; Panel B presents �rst-stage results. In Panel A, the normalization procedures for the dependent variables are: natural log transformation (columns 1
through 4); and inverse hyperbolic sine transformation (columns 5 through 8). The total number of �nes issued in each municipality and year serves as a proxy for law enforcement.
The set of control variables contains: precipitation and temperature (weather); PRODES cloud coverage and other non-observable areas (satellite visibility); and agricultural
commodity prices. The trends are interactions between a linear year trend and accumulated deforested area in 2003 (as a share of municipal area), the 2003 deforestation
increment, or the 2002 through 2004 average municipal �ne count. Columns 1 and 5 replicate benchmark results. The dataset is a municipality-by-year panel covering the 2006
through 2016 period. The sample includes all Amazon biome municipalities that exhibited variation in forest cover during the sample period and for which deforestation data
were available. Robust standard errors are clustered at the municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.
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Table 8: Robustness Checks, IV Regressions: Sample Composition

(1) (2) (3) (4) (5) (6)

Panel A: 2SLS, second-stage results

depvar: ln(deforest) depvar: IHS(deforest)

benchmark benchmark

enforcement, t-1 -0.0743** -0.0538*** -0.0532** -0.0503*** -0.0493*** -0.0446**
(0.0290) (0.0201) (0.0255) (0.0177) (0.0179) (0.0176)

FE: muni & year yes yes yes yes yes yes
controls: full yes yes yes yes yes yes

pre-DETER forest all > median all all > median all
sample period 2006 � 2016 2006 � 2016 2005 � 2016 2006 � 2016 2006 � 2016 2005 � 2016

observations 5,210 2,600 5,731 5,210 2,600 5,731
municipalities 521 260 521 521 260 521

Panel B: 2SLS, �rst-stage results

depvar: enforcement

benchmark

DETER cloud coverage -9.6628*** -17.0926*** -8.7604***
(2.5184) (4.8435) (2.3508)

�rst-stage F-statistic 14.72 12.45 13.89

FE: muni & year yes yes yes
controls: full yes yes yes

pre-DETER forest all > median all
sample period 2006 � 2016 2006 � 2016 2005 � 2016

observations 5,210 2,600 5,731
municipalities 521 260 521

Notes: 2SLS coe�cients are estimated based on Equation (2) from Section 3. Panel A presents second-stage results; Panel B presents
�rst-stage results. In Panel A, the normalization procedures for the dependent variables are: natural log transformation (columns 1
through 3); and inverse hyperbolic sine transformation (columns 4 through 6). The total number of �nes issued in each municipality
and year serves as a proxy for law enforcement. The set of control variables contains: precipitation and temperature (weather);
PRODES cloud coverage and other non-observable areas (satellite visibility); and agricultural commodity prices. Columns 1 and 4
replicate benchmark results. The benchmark dataset is a municipality-by-year panel covering the 2006 through 2016 period; columns 3
and 6 refer to an extended sample period covering the 2005 through 2016 period. The benchmark sample includes all Amazon biome
municipalities that exhibited variation in forest cover during the sample period and for which deforestation data were available;
columns 2 and 4 refer to a restricted sample consisting of municipalities containing an above-median ratio of forest to municipal area
at baseline. Robust standard errors are clustered at the municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.
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Table 9: Robustness Checks, IV Regressions: Inclusion of Conservation Policy Controls

(1) (2) (3) (4)

Panel A: 2SLS, second-stage results

depvar: ln(deforest) depvar: IHS(deforest)

benchmark benchmark

enforcement, t-1 -0.0743** -0.0804** -0.0503*** -0.0535***
(0.0290) (0.0320) (0.0177) (0.0195)

priority municipality 0.6272 0.2846
(0.4099) (0.2749)

protected territory 3.9807*** 2.4942***
(1.2213) (0.7888)

FE: muni & year yes yes yes yes
controls: full yes yes yes yes

observations 5,210 5,210 5,210 5,210
municipalities 521 521 521 521

Panel B: 2SLS, �rst-stage results

depvar: enforcement

benchmark

DETER cloud coverage -9.6628*** -8.9976***
(2.5184) (2.4823)

priority municipality 8.6511**
(3.7980)

protected territory 22.8088*
(11.7749)

�rst-stage F-statistic 14.72 13.14

FE: muni & year yes yes
controls: full yes yes

observations 5,210 5,210
municipalities 521 521

Notes: 2SLS coe�cients are estimated based on an adaptation of Equation (2) from Section 3, in
which additional conservation policy variables are included as controls. Panel A presents second-
stage results; Panel B presents �rst-stage results. In Panel A, the normalization procedures
for the dependent variables are: natural log transformation (columns 1 and 2); and inverse
hyperbolic sine transformation (columns 3 and 4). The total number of �nes issued in each
municipality and year serves as a proxy for law enforcement. The set of control variables
contains: precipitation and temperature (weather); PRODES cloud coverage and other non-
observable areas (satellite visibility); and agricultural commodity prices. Columns 1 and 3
replicate benchmark results. The dataset is a municipality-by-year panel covering the 2006
through 2016 period. The sample includes all Amazon biome municipalities that exhibited
variation in forest cover during the sample period and for which deforestation data were
available. Robust standard errors are clustered at the municipality level. Signi�cance: ***
p<0.01, ** p<0.05, * p<0.10.
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Table 10: Robustness Checks, IV Regressions: Alternative Weather Controls

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 2SLS, second-stage results

depvar: ln(deforest) depvar: IHS(deforest)

benchmark benchmark

enforcement, t-1 -0.0743** -0.0767** -0.0707** -0.0735** -0.0726** -0.0503*** -0.0519*** -0.0480*** -0.0498*** -0.0492***
(0.0290) (0.0303) (0.0291) (0.0308) (0.0286) (0.0177) (0.0184) (0.0177) (0.0187) (0.0174)

FE: muni & year yes yes yes yes yes yes yes yes yes yes
controls: full yes yes yes yes yes yes yes yes yes yes

precipitation dataset MW MW CPC CPC NCEP MW MW CPC CPC NCEP
temperature dataset MW CPC MW CPC MW MW CPC MW CPC MW

observations 5,210 5,198 5,210 5,198 5,210 5,210 5,198 5,210 5,198 5,210
municipalities 521 521 521 521 521 521 521 521 521 521

Panel B: 2SLS, �rst-stage results

depvar: enforcement

benchmark

DETER cloud coverage -9.6628*** -9.3122*** -9.3844*** -8.9377*** -9.7835***
(2.5184) (2.4655) (2.4880) (2.4204) (2.5486)

�rst-stage F-statistic 14.72 14.27 14.23 13.64 14.74

FE: muni & year yes yes yes yes yes
controls: full yes yes yes yes yes

precipitation dataset MW MW CPC CPC NCEP
temperature dataset MW CPC MW CPC MW

observations 5,210 5,198 5,210 5,198 5,210
municipalities 521 521 521 521 521

Notes: 2SLS coe�cients are estimated based on an adaptation of Equation (2) from Section 3, in which weather variables from alternative datasets are included as controls. Panel A
presents second-stage results; Panel B presents �rst-stage results. In Panel A, the normalization procedures for the dependent variables are: natural log transformation (columns 1
through 5); and inverse hyperbolic sine transformation (columns 6 through 10). The total number of �nes issued in each municipality and year serves as a proxy for law enforcement.
The set of control variables contains: precipitation and temperature (weather); PRODES cloud coverage and other non-observable areas (satellite visibility); and agricultural commodity
prices. The table references the weather datasets as follows (see Section 6.3 for dataset details): MW for benchmark; CPC for NOAA's Climate Prediction Center; and NCEP for NOAA's
National Centers for Environmental Prediction. Columns 1 and 6 replicate benchmark results. The dataset is a municipality-by-year panel covering the 2006 through 2016 period. The
sample includes all Amazon biome municipalities that exhibited variation in forest cover during the sample period and for which deforestation data were available. Robust standard errors
are clustered at the municipality level. Signi�cance: *** p<0.01, ** p<0.05, * p<0.10.
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