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Abstract

The paper explores detailed firm-level data from 2007 to 2015 to analyze energy
efficiency and its relation to productivity in the Brazilian Industry. We describe the
relationship between energy misallocation and resource misallocation and quantify
the extent to which distortions affecting energy use result in output losses at the
aggregate level. Data are taken from the Annual Survey of Industry and the final
database is composed of about 30,000 firms per year covering 106 sectors. We show
that misallocation increased from 2007 to 2015, and was the main reason preventing
aggregate productivity and energy efficiency growth. During this period, more
productive and energy efficient firms lost market shares. Resources were reallocated
from the most efficient firms, in terms of productivity and energy use, towards firms
with lower efficiency levels. We also find that energy and resource misallocation are
positively related across industries, which suggests that there is no trade-off between
productivity and environmental gains. Finally, we use the model developed by Hsieh
& Klenow (2009) to quantify potential aggregate productivity gains taking into
consideration the existence of energy distortions. We find that reallocating resources
between firms would result in substantial aggregate output gains. However, capital
distortions are relatively more important than energy distortions in generating
resource misallocation and productivity losses. The combination of these findings
suggests that industrial initiatives are more effective than firm-level ones to improve
energy efficiency in the Brazilian industry. Moreover, it is important that
policymakers design broader industrial policies to tackle distortions that are more
binding than energy distortions. This, in turn, would make room for programs that
target industrial energy efficiency. The existence of an energy misallocation implies
that potential gains from improving the allocation of resources in the economy would
not only increase aggregate productivity but also raise well-being by reducing
emissions and energy use.

1 Introduction

Recent empirical evidence has revealed a high degree of heterogeneity in energy
efficiency levels across firms, even in narrowly defined industries (Cherniwchan et al. 2017).
From the environmental point of view, this evidence suggests that firms underinvest in
energy efficient technologies. In this case, there is considerable room for improvement in
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energy efficiency levels, reducing aggregate energy consumption and emissions associated
with energy generation and use (DeCanio 1993).

A related strand of literature argues, both empirically and theoretically, that dispersion
in firm productivity levels within industries might reflect resource misallocation (Banerjee &
Duflo 2005, Restuccia & Rogerson 2008, Hsieh & Klenow 2009). This process is characterized
by the presence of distortions that simultaneously affect the allocation of resources in the
economy and allow the survival of unproductive firms. Resource misallocation implies that
aggregate productivity gains can be obtained by reallocating resources across firms, such
that the final allocation reflects firms’ relative productivity levels. Hence, the dispersion
of energy efficiency levels has another important implication, since it potentially reflects
an inefficient allocation of energy usage across firms. Moreover, it implies that resource
reallocation within industries could lead to both environmental and economic aggregate
gains.

The main goal of this chapter is to describe resource misallocation in Brazilian
manufacturing, and to quantify the role of energy use among firms in generating
misallocation. Quantifying the degree in energy misallocation is important because it is
informative of the attainable environmental gains associated with improvements in
resource allocation. We also evaluate how allocation efficiency contributed to the evolution
of aggregate productivity and energy efficiency in Brazil, from 2007 to 2015. Finally, we
quantify the extent to which distortions in firms’ inputs, including energy use, result in
manufacturing productivity losses at the aggregate level. We take advantage of detailed
Brazilian firm-level data with information on firms’ outputs and inputs, covering 106
manufacturing industries. We focus on electricity as our measure of energy, due to its
importance in firms’ activities (Allcott et al. 2016) and consistent, yearly information on
firms’ electricity costs in the data.

First, we use the decomposition proposed by Olley & Pakes (1996) to define a direct
measure of energy and resource misallocation. From the decomposition, we describe how
the evolution of aggregate energy efficiency and productivity in Brazil were driven by
technological changes and by the allocation efficiency of resources across heterogeneous
firms. Then, we explore the relationship between energy and resource misallocation, both
at the aggregate and industry levels. Furthermore, we apply the model in Hsieh & Klenow
(2009) including electricity as an input, and we compute potential aggregate productivity
gains from reallocating inputs across firms within industries. In a related experiment, we
assess the relative importance of each input in generating resource misallocation. We
quantify potential gains implied by the model assuming that there are only either capital
or electricity distortions affecting firms’ input choices.

Our main contribution is to provide empirical evidence that energy misallocation and
resource misallocation are positively related across industries. This result implies that
there is no trade-off between energy and economic efficiency, so efforts to improve energy
efficiency are closely related to policies directed at improving aggregate productivity.
Moreover, resource reallocation across firms has the potential to increase not only
aggregate productivity, but also improve aggregate energy efficiency levels. The Olley &
Pakes (1996) decomposition reveals that resource misallocation increased from 2007 to
2015, and was the main reason preventing aggregate productivity and energy efficiency
growth. During this period, resources were reallocated from the most efficient firms, in
terms of productivity and energy use, towards firms with lower efficiency levels.

Empirical estimates from the Hsieh & Klenow (2009) model imply that reallocating
resources across firms at the industry level would lead to aggregate productivity gains
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ranging from 78% to 96%. However, relative gains from capital reallocation are higher
than gains from electricity reallocation. While efficient capital allocation would increase
aggregate productivity by 30%, the increase from reaching an efficient electricity allocation
would be only 2.5%.

Assunção & Schutze (2017) argue that, in Brazil, policies and financial incentives to
promote energy efficiency are mainly focused on household consumption. These policies
have mostly been responsive to negative supply shocks, instead of being a continuous effort
to promote better energy use. As a result, firms have little incentive to invest in more
efficient technologies, even if they account for the majority of the country’s electricity
consumption1. Understanding the allocation of energy efficiency across firms can have
important policy implications, pointing to actions that improve aggregate energy
efficiency, without necessarily increasing individual firms’ technology levels.

Inefficient energy allocation across firms could arise due to market failures such as
imperfect information (Anderson & Newell 2004, Bloom et al. 2013), assymetric
information and principal-agent problem (Howarth et al. 2000, De Almeida 1998, Ostertag
2012), credit constraints (Rohdin et al. 2007, Allcott & Greenstone 2012) and even energy
price uncertainty (Diederen et al. 2003, Löfgren et al. 2008). The existence of an energy
misallocation implies that potential gains from improving the allocation of resources in the
economy would not only increase aggregate productivity, but also raise well-being by
reducing emissions and energy use.

Our model is different from that of other papers addressing firm-level energy efficiency
such as Copeland & Taylor (2013) or Barrows & Ollivier (2018), since it introduces
firm-specific wedges that affect the marginal cost of electricity and, consequently, firms’
optimal input choices. The inclusion of wedges is essential in our context, resulting in
output losses from inefficient resource allocation. However, one disadvantage from using
the framework proposed by Hsieh & Klenow (2009) is that it relies on strong assumptions
about the elasticity of supply and demand. Haltiwanger et al. (2018) show that, in the
case where these assumptions do not hold, the distortions computed from the data could
reflect demand shifts or movements along the marginal cost curve, which are not indicative
of inefficiencies faced by the firm.

The rest of the chapter is organized as follows. Section 2 describes our data sources.
We describe the evolution and the relationship between energy misallocation and resource
misallocation at the industry level in Section 3. In Section 4, we apply the model in Hsieh
& Klenow (2009) by including electricity as a production input. Section 5 quantifies the
potential gains from efficiently allocating resources across firms, and evaluates the relative
importance of each distortion in generating resource misallocation. Section 6 addresses how
our estimates for potential aggregate gains are robust to changes in model hypotheses and
parameter values. Section 7 concludes.

2 Data

Our primary source of data is the Pesquisa Industrial Anual (PIA), a restricted-access
panel data gathered annually by the Brazilian National Bureau of Statistics (IBGE), from
2007 to 20152. PIA contains information on formal firms’ production and inputs. It consists

1In 2016, manufacturing firms accounted for 33% of electricity consumption in Brazil (Empresa de
Pesquisa Energética 2017)

2These are confidential data and have been granted access by IBGE through the use of its restricted-
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of a census of firms with at least 30 workers or with gross revenue above a certain limit3,
and a random sample of smaller firms which do not qualify for the census sample. We drop
smaller firms belonging to the random sample, since information is limited for this group
and does not contain, for example, electricity expenditure separately from other sources of
energy and data on capital stock.

The variables used from PIA include firm’s industry according to the three-digit CNAE
2.0 classification, the number of workers on December 31st, labor compensation, value added,
electricity expenditures, and the book-value of capital. We measure labor compensation as
the sum of wages, bonuses, benefits and social security contribution to paid employees4.
The book-value of capital is obtained from information on depreciation, investment, leasing
and capital rents via the perpetual inventory method. We deflate all monetary values using
the IPA-OG deflator, from Fundação Getúlio Vargas, a three-digit CNAE deflator.

By restricting the analysis to the census sample of PIA, we use 76% of firm-level
observations available in PIA. This sample of firms corresponds to 97% of Brazilian
employment, but only 15% of the total number of firms operating in Brazil. One drawback
from not including the random sample of firms in PIA is that our results could be biased if
smaller firms are more subject to distortions which prevents them from adopting energy
efficient technologies. Since smaller firms are probably more prone to restrictions such as
credit constraints, we believe that by excluding the random sample from our analysis, our
results will underestimate the true potential gains from eliminating distortions that
generate energy misallocation5.

We input data on firm age and municipality from the Relação Anual de Informações
Sociais (RAIS) dataset, collected annually by the Brazilian Labor Ministry, from 2007 to
2013. Every year, all formally registered firms are required to report firm-level information,
as well as individual characteristics of all its workers. Although RAIS does not contain
any reported information on firms’ entry year, we infer entry from the earliest hiring year
reported in each firm for the whole sample period. Based on the estimated entry year, we
calculate firm age accordingly6.

Finally, electricity prices by municipality are calculated based on publicly available data
from Agência Nacional de Energia Elétrica (ANEEL), the Brazilian Electricity Regulatory
Agency. For each electricity distributor in Brazil, we calculate the annual average industrial
tariff charged from 2007 to 2015. Although the average tariff does not perfectly reflect the
true electricity cost faced by all firms, it is an excellent approximation. We then associate
annual electricity prices to Brazilian municipalities based on the geographical coverage of
each distributor, and attribute these prices to firms based on the municipality in which they
are located. Since we do not have data on firms’ municipalities for 2014 and 2015, we recover
this information from firms’ appearances in RAIS in previous years, whenever possible.

About 10% of firms in the data report zero or unreasonably low values of electricity
expenditures. In Brazil, the government establishes a minimum charge on electricity bills of

access room. The results and conclusions expressed in this chapter are our own and do not necessarily
present the views of IBGE. Our results do not constitute official IBGE statistics.

3This limit is established yearly. For example, this limit was equal to R$12.8 million in 2015.
4Our results are not altered by the exclusion of social security contributions in the measure of labor

compensation.
5Our results are still comparable to those of Hsieh & Klenow (2009), since their data also includes only

firms above certain size or revenue restrictions.
6Since we do not have access to RAIS for the years of 2014 and 2015, we did not consider any age

measure for those years.
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R$30, even when there is no consumption at all7. Thus, we drop all observations reporting
electricity expenditures lower than this minimum charge. We also drop five industries with
the lowest number of observations, with consistently less than five observations per year.8

The final database comprises 63,431 unique firms in 106 three-digit CNAE industries. A
complete list of the industries included in our paper is presented in the Appendix, in Table
11. Table 1 details the number of firms and employment included in PIA for each year of
the sample.

Our measure of energy efficiency used in section 3 consists on the ratio of value added
to electricity expenditure. Ideally, we would like to identify electricity consumption by
each firm. Electricity consumption is affected by the price of electricity available to firms
in different geographical areas. The idea of this energy efficiency is capturing how much
production can be attained with a given consumption of electricity. It is widely adopted
in works such as Allcott & Greenstone (2012), Fisher-Vanden et al. (2004) and by the
International Energy Agency. A similar definition considering emissions is common as well,
as in Andersen (2017), Barrows & Ollivier (2018). One disadvantage from using this energy
efficiency measure is that it relies on electricity costs, and so it does not capture auto-
production of electricity by firms. We also measure electricity usage imperfectly for firms
in industries where other sources of energy are especially relevant.

Table 1: Number of observations in PIA

Year Firms Employment
2007 27,604 5,158,598
2008 29,508 5,415,605
2009 29,943 5,415,981
2010 30,753 5,852,775
2011 32,520 6,085,518
2012 32,718 6,202,386
2013 32,139 6,258,764
2014 32,240 6,122,721
2015 29,765 5,660,443

Notes: Number of firms and total employment by year. Data
from PIA.

3 Energy misallocation

In this section, we define a measure of productivity and energy efficiency dispersion,
and we use it to describe the relationship between energy misallocation and overall resource
misallocation at the industry level. We also show how the allocation of resources has affected
the evolution of aggregate productivity and energy efficiency levels in Brazil, from 2007 to
2015. We use the decomposition developed by Olley & Pakes (1996), which tracks how the
evolution of aggregate productivity is affected by technological innovations and changes in
the allocation efficiency of resources.

7Resolução Normativa 414/2010.
8These sectors are: Extraction of crude petroleum and natural gas; Support activities for other mining

and quarrying; Manufacture of coke oven products; Manufacture of magnetic and optical media; Manufacture
of military fighting vehicles.
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Figure 1 illustrates that Brazilian aggregate productivity steadily decreases from 2007
to 2015. Aggregate energy efficiency does not change much during this period, although
there seems to be a decline starting in 2013. We now decompose these aggregate measures
of efficiency to better understand how they were affected by changes in technology and by
changes in the allocation of resources across firms.

Figure 1: Aggregate energy efficiency and aggregate productivity
3
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2007 2008 2009 2010 2011 2012 2013 2014 2015
Year

Energy efficiency
Productivity

Notes: Aggregate productivity and aggregate energy efficiency by year.
Data from PIA and RAIS, from 2007 and 2015.

We denote value added from firm i in industry s by PsiYsi. The aggregate value added
of industry s is given by Vs =

∑Ms

i=1 PisYis, where Ms is the number of firms operating in
industry s. Firm i’s market share is calculated as ϕis = PisYis

Vs
.

We define firm-level energy efficiency as the ratio of value added to electricity
expenditure, eis = PisYis/Eis, where Eis is electricity expenditure by firm i in industry s.
The intuition of this measure is that higher energy efficiency levels eis allow more output
to be produced from a given consumption of electricity.

Using the decomposition proposed by Olley & Pakes (1996), we can write the aggregate
energy efficiency of industry s as a weighted average of firms’ individual energy efficiency
levels, using market shares as weights. This term can then be expressed as a function of
average energy efficiency and market shares, and deviations from this average value.

es =

Ms∑
i=1

ϕiseis =

Ms∑
i=1

(ϕs + ∆ϕis) (es + ∆eis) (1)

where ϕs and es represent the unweighted industry averages of market shares and energy
efficiency, respectively. ∆ϕis and ∆eis express deviations from the industry average, given
by ∆ϕis = ϕis − ϕs and ∆eis = eis − es.

From the decomposition, we obtain:
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es =

Ms∑
i=1

ϕses + ϕs

Ms∑
i=1

∆eis + es

Ms∑
i=1

∆ϕis +

Ms∑
i=1

∆ϕis∆eis (2)

The industry sum of deviations from the mean must be zero, by definition, such that∑Ms

i=1 ∆ϕis =
∑Ms

i=1 ∆eis = 0. Moreover,
∑Ms

i=1 ϕses = Msϕses = es, using the fact that∑Ms

i=1 ϕis = 1. This leaves us with the following expression for aggregate energy efficiency:

es = es +

Ms∑
i=1

(ϕis − ϕs) (eis − es) (3)

The idea of this decomposition is that aggregate energy efficiency is affected by a
technical component, es, measuring increases in average energy efficiency, and a
composition component,

∑Ms
i=1 (ϕis − ϕs) (eis − es), which captures how the allocation of

resources between firms of varying levels of energy efficiency affects the aggregate level of
this variable.

The composition component of energy allocation in industry s, denoted by λes, is
described in equation 4.

λes =

Ms∑
i=1

(ϕis − ϕs) (eis − es) (4)

The energy allocation λes is a measure of the covariance between firms’ market shares
and energy efficiency in industry s. It is negatively related to the degree of misallocation,
since higher values of λes imply that electricity is being allocated to firms with high energy
efficiency, which in turn increases aggregate energy efficiency in that industry.

We can use the Olley & Pakes (1996) decomposition to define a measure of resource
allocation, λθs. The composition component of the resource allocation, λθs, is defined
analogously to λes.

λθs =

Ms∑
i=1

(ϕis − ϕs)
(
θis − θs

)
(5)

Firm productivity, θis, is defined as value added per worker. Again, λθs a higher delta
implies a more efficient allocation of resources, which in turn implies a lower level of
misallocation.

Table 2 illustrates the decomposition of aggregate energy efficiency and aggregate
productivity for Brazil from 2007 to 2015. Aggregate energy efficiency decreased from 3.6
in 2007 to 3.47 in 2015, although there is not a clear negative trend in the data. Average
firm energy efficiency consistently increases during this period, starting at 2.91 and
reaching 3.41 in 2013, but it decreases abruptly to 3.12 in 2015. The energy allocation, on
the other hand, worsened consistently during the whole period. In 2015, at 0.45, it falls to
60% of its initial level.

Table 2 expresses that, even with an overall improvement in the use of electricity within
firms, reflected by average energy efficiency, we find that electricity inputs were reallocated
from more energy efficient firms to less energy efficient firms. This fact helps to explain why
there was no growth in aggregate energy efficiency during our sample period.
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Table 2: Energy efficiency and productivity decomposition

Energy Efficiency Productivity

Year e e λe θ θ λθ

2007 3.67 2.91 0.77 13.72 11.61 2.11
2008 3.74 3.04 0.70 13.64 11.64 2.01
2009 3.98 3.07 0.91 13.54 11.59 1.95
2010 3.77 3.18 0.59 13.46 11.65 1.82
2011 3.92 3.23 0.69 13.44 11.65 1.79
2012 3.74 3.29 0.45 13.22 11.61 1.61
2013 3.92 3.41 0.51 13.28 11.65 1.63
2014 3.81 3.37 0.44 13.30 11.66 1.65
2015 3.47 3.02 0.45 13.19 11.63 1.56

Notes: Decomposition of aggregate energy efficiency and
productivity into a technical component, e and θ, that measure
average firm efficiency, and an allocation component, λe and
λθ, that reflects how resources are allocated towards the most
efficient firms. Data from PIA and RAIS.

The decomposition of aggregate productivity in Table 2 also indicates that the main
factor hindering aggregate productivity growth in Brazil is the allocation of resources
among heterogeneous firms. Brazilian aggregate productivity decreased from 13.72 in 2007
to 13.19 in 2015, but this evolution was not the result of a reduction in firms’ average
productivity. The main factor explaining the decrease of aggregate productivity is the
composition component of resource allocation, revealing that resources were reallocated
from more productive firms to less productive ones.

Figure 2 plots the relationship between the aggregate measures of the composition
component, λe and λθ, for each year in our sample. It depicts that there is a positive
correlation between the allocation efficiency of energy inputs and the overall allocation
efficiency of resources. The Figure 2 also illustrates our result from Table 2 that this
period was characterized by a decline in the allocation efficiency of resources and energy,
as we can see from the falling levels of allocation efficiency over the years. During this
period, more productive and energy efficient firms lost market shares, and resources were
reallocated to less efficient firms, increasing misallocation.

At the aggregate level, however, dispersion in productivity and energy efficiency levels
naturally arise due to differences in industry characteristics such as energy use intensity,
production costs, and scale. To take these differences into consideration, we now turn to
describe the allocation efficiency of resources and energy inputs at the industry level.

Figure 3 plots the relationship between the efficiency in energy allocation, λes, and in
resource allocation, λθs, at the industry level. These measures are computed for each of the
106 mining and manufacturing industries in Brazil, by pooling observations from 2007 to
2015. In Section 6, we address if our results are robust to using alternative productivity
measures.

Confirming our previous results, we find a positive cross-sectional relationship between λes
and λθs, with a correlation coefficient of 0.40. This result implies that energy allocation and
resource allocation are positively related across industries. In industries where electricity is
allocated efficiently, to the most energy efficient firms, resources are generally also allocated
to the most productive firms. Hence, we can directly infer that energy misallocation is
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Figure 2: Aggregate misallocation
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Notes: Composition component measures of energy allocation, λe, and
resource allocation, λθ, plotted by year. Data from PIA and RAIS.

positively related to resource misallocation. This positive relationship is consistent with
evidence that firm-level energy efficiency is one important component in the determination
of productivity, since energy efficiency influences firms’ optimal decision for other production
inputs (Ryan 2015). Table 8 in the Appendix reports that these results are not altered when
the allocation efficiency measures are computed for a specific year, 2015.

One important implication from these results is that there is no trade-off between energy
allocation and resource allocation. In particular, it implies that public policy efforts to
promote higher energy allocation efficiency should include actions that increase the market
share of the most productive firms in each industry.

As a complementary exercise, to provide some evidence on the factors associated with
firm performance, we explore the correlation between energy efficiency or productivity and
firm characteristics. We run regressions of the form:

eist = β1log(Empist) + β2Ageist + β3Xist + β4Tist + γt + γs + γd + εist (6)

θist = β1log(Empist) + β2Ageist + β3Xist + β4Tist + γt + γs + γd + εist (7)

We consider both energy efficiency, eist, and productivity, θist, as dependent variables.
Subscripts represent firm i, operating in industry s, in year t. To provide some evidence on
the behavior of our efficiency measures over the firm’s life cycle, we include firm employment,
log(Empist), and age Ageist, as independent variables. We also include electricity prices,
Tist. The vector Xist is a set of firm characteristics possibly associated with energy efficiency
and productivity levels. To test if firms more intensive in human capital are more efficient,
on average, Xist includes a measure of workers’ skill level, the fraction of workers with at
least a high school degree. We also include a measure of firm leverage, to explore if access
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Figure 3: Resource and energy misallocation at the industry level
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Notes: Measures of energy allocation, λes, and resource allocation, λθs ,
plotted for each of the 106 three-digit industries in our database. Data
from PIA and RAIS.

to credit alter firm behavior. This measure is computed as the ratio of financial costs to
value added. To consider the possibility that firm structure is related to performance, we
also include as a control variable the fraction of family members working in the firm relative
to total employment. This measure would capture, for example, differences in managerial
practices adopted by family firms.

Additionally, we include year fixed effects, γt, to control for economic events that affect all
firms simultaneously, and industry fixed effects, γs to control for differences in productivity
and energy efficiency levels across activities. We also include electricity distributor fixed
effects, γd, to control for differences in electricity price levels. The regressions are estimated
pooling data from 2007 to 2013, the last year for which we have firm age information from
RAIS. It is important to note that the goal of this exercise is to describe the relationship
between energy efficiency, productivity and firm characteristics.

The results should not be interpreted as causality. The first two columns of Table 3 show
that there is a positive relationship between firm employment and energy efficiency. This
result could reflect the fact that larger firms invest more in energy efficiency due to capital
availability or access to credit, or because this investments are profitable for firms operating
at a larger scale. Age, on the other hand, is negatively related to energy efficiency. One
possible explanation for this result is that firms adopt new technology available at the time
they are born. However, as firms age, they do not update their production process as new
technologies are made available.

We also find that human capital is positively associated with energy efficiency, as
measured by our skill proxy. Firm leverage is negatively associated with energy efficiency,
while a high share of family employees is usually associated with higher levels of efficiency.
In column two, we find a negative relationship between electricity prices and energy
efficiency, which is not consistent with empirical findings (Barrows & Ollivier 2018). One
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Table 3: Energy efficiency

(1) (2) (3) (4)
eist eist eist eist

log(Employmentist) 0.0859*** 0.0851*** 0.154*** 0.152***
(0.00387) (0.0038) (0.0098) (0.0098)

Ageist -0.0087*** -0.0087*** 0.0584*** 0.0336***
(0.0003) (0.0003) (0.0014) (0.0025)

Skillist 2.243*** 2.240*** 0.334*** 0.323***
(0.0529) (0.0529) (0.100) (0.100)

Leverageist -0.179*** -0.179*** -0.226*** -0.226***
(0.0020) (0.0020) (0.0032) (0.0032)

Frac(Familyist) 0.328*** 0.319*** 0.236** 0.230**
(0.0956) (0.0961) (0.101) (0.102)

Tariffist -0.0009*** -0.0010***
(0.0001) (0.00008)

Year fixed effects Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes
Distributor fixed effects Yes Yes Yes Yes
Firm fixed effects No No Yes Yes

Observations 162,421 161,531 162,421 161,531
R-squared 0.314 0.314 0.828 0.828

Notes: This table presents firm-level regressions of energy efficiency on firm
characteristics and the price of electricity. Firm characteristics include employment, age,
workers’ skill level, firm leverage and the ratio of family members to total employment.
Data from PIA. Regressions cover data from 2007 to 2013. Robust standard errors in
parenthesis. Significance levels: * 10%, ** 5%, *** 1%.

possible reason for this counterintuitive result is that our measure of energy efficiency is
computed with electricity expenditure, while ideally we would like to measure
consumption. If prices increase, then electricity expenditures will naturally rise.

In the last two columns of Table 3, we include firm fixed effects. These results use intra-
firm variation over time to identify the effects of firm characteristics on energy efficiency.
The relationship between energy efficiency and firm employment intensifies, meaning that
firms improve their efficiency in the usage of electricity as they grow. In this specification,
the effect of age on energy efficiency turns from negative to positive, which suggests firms
invest in energy efficient technologies over their life cycle. The relationship between energy
efficiency and the other variables considered are not altered with the inclusion of firm fixed
effects.

Table 4 presents similar estimates to illustrate firm characteristics associated with high
productivity. The first two columns include year, distributor and industry fixed effects. We
find that both employment and age are positively associated with productivity, consistent
with theoretical and empirical evidence (Hopenhayn 1992, Dunne et al. 1988). This result
is consistent with theoretical predictions that firms’ optimal employment is increasing in
productivity. Human capital and the fraction of family members are positively related to
productivity, while leverage is negatively related, similar to our findings for energy efficiency.
We find no effect of electricity prices on productivity. Columns three and four additionally
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Table 4: Productivity

(1) (2) (3) (4)
θist θist θist θist

log(Employmentist) 0.107*** 0.107*** -0.421*** -0.422***
(0.0031) (0.0032) (0.0086) (0.0086)

Ageist 0.0091*** 0.0091*** 0.0488*** 0.0470***
(0.0002) (0.0002) (0.0010) (0.0018)

Skillist 3.563*** 3.561*** 0.164** 0.163**
(0.0423) (0.0423) (0.0768) (0.0769)

Leverageist -0.0856*** -0.0856*** -0.201*** -0.202***
(0.0016) (0.0016) (0.0028) (0.0028)

Frac(Familyist) 2.376*** 2.370*** 0.968*** 0.967***
(0.0891) (0.0895) (0.0898) (0.0901)

Tariffist -0.00001 -0.00005
(0.00008) (0.00006)

Year fixed effects Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes
Distributor fixed effects Yes Yes Yes Yes
Firm fixed effects No No Yes Yes

Observations 162,421 161,531 162,421 161,531
R-squared 0.341 0.340 0.821 0.821

Notes: This table presents firm-level regressions of productivity on firm characteristics
and the price of electricity. Firm characteristics include employment, age, workers’ skill
level, firm leverage and the ratio of family members to total employment. Data from
PIA. Regressions cover data from 2007 to 2013. Robust standard errors in parenthesis.
Significance levels: * 10%, ** 5%, *** 1%.

include firm fixed effects to control for unobserved firm-specific characteristics that are
constant over time. We find that the inclusion of firm fixed effects results in a negative
relationship between productivity and employment. This, however, could be a reflection of
our productivity measure, which declines linearly with employment.

In this section, we have shown that there is a positive relationship between the
misallocation of energy and overall resource misallocation. Moreover, allocation efficiency
in Brazil has not improved over the last decade, preventing aggregate productivity growth.
This result suggests the presence of distortions which prevent the growth of the most
productive firms. In the next section, we identify the prevalence of distortions affecting
resource allocation and quantify the potential gains from reallocating resources across
firms.

4 Theoretical framework

In this section, we introduce electricity into the model developed by Hsieh & Klenow
(2009) to allow distortions affecting electricity allocation across firms. The model allows us
to infer firm-specific distortions leading to non-optimal input choices. Based on these
distortions, we can quantify potential aggregate productivity gains from reallocating
resources across firms. Finally, the model also provides us with an intuitive productivity
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measure taking into consideration firms’ electricity use.
The framework is a standard version of a monopolistic competition model with

heterogeneous firms deriving from Melitz (2003). There is a single final good Y produced
under perfect competition by combining inputs Ys from S intermediate manufacturing
industries.

Y =

S∏
s=1

Y ρss (8)

where ρs is the industry share of industry s and
∑S
s=1 ρs = 1. The first order condition

from profit maximization implies that:

PsYs = ρsPY (9)

Where Ps is the price of intermediate good Ys, and P is the price of the final good Y ,

where P ≡
∏S
s=1

(
Ps
ρs

)ρs
is normalized to one.

In each industry s, there are Ms firms producing differentiated goods Yis in a
monopolistically competitive environment. The constant elasticity of substitution
aggregation of these Ms goods results in the intermediate good Ys.

Ys =

(
Ms∑
i=1

Y
σ−1
σ

is

) σ
σ−1

(10)

where σ is the elasticity of substitution between differentiated goods.
Each differentiated good Yis in industry s is produced by a firm i according to a constant

returns to scale Cobb-Douglas technology production function. Firms use capital, labor and
electricity as inputs. Input shares αs, βs and 1 − αs − βs are constant across firms within
industry s, but are allowed to vary across industries. Firms are heterogeneous in their
physical productivity θis, and thus production functions are given by:

Yis = θisK
αs
is L

βs
is E

1−αs−βs
is (11)

There are firm-specific distortions which alter inputs’ marginal costs, reflecting forces
such as market failures or governmental policies that distort firms’ optimal input choices.
Output distortions τY is affect the marginal product of all three inputs simultaneously, while
distortions τKis and τEis affect the marginal revenue of capital and electricity relative to
that of labor.

Hsieh & Klenow (2009) thinks of output distortions as reflecting government size
restrictions, output subsidies or transportation costs, while capital distortions are likely
the result of credit constraints or subsidized access to credit. In the context of electricity,
distortions can be interpreted as the failure of prices to account for negative externalities
resulting from energy use, or credit constraints that prevent firms from adopting energy
efficient technologies. They could also reflect imperfect information which requires
managers to incur in costs, either financial or opportunity costs, to learn about available
energy efficiency investments.
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Wages w, the rental price of capital R and electricity prices T are constant across firms
and industries, so that profits are given by:

πis = (1 − τY is)PisYis − wLis − (1 + τKis)RKis − (1 + τEis)TEis (12)

The profit maximization problem defines that the price chosen by each firm is a fixed
markup over its marginal cost:

Pis =
(

σ
σ−1

)(
R
αs

)αs (
w
βs

)βs (
T

1−αs−βs

)1−αs−βs
1
θis

(1+τKis)
αs (1+τEis)

1−αs−βb

(1−τY is) (13)

Distortions alter optimal input choices because marginal revenue is equated to the
after-tax marginal cost of inputs. From firms’ profit maximization problem, we can obtain
expressions for the marginal revenue of labor (MRPL), capital (MRPK) and electricity
(MRPE):

MRPLis = w
1

(1 − τY is)
(14)

MRPKis = R
(1 + τKis)

(1 − τY is)
(15)

MRPEis = T
(1 + τEis)

(1 − τY is)
(16)

From first order conditions of the profit maximization problem, we can infer firm-specific
distortions in a given year from relative input use and parameter values:

1 + τKis =
αs
βs

wLis
RKis

(17)

1 + τEis =
1 − αs − βs

βs

wLis
TEis

(18)

1 − τY is =
σ

σ − 1

wLis
βsPisYis

(19)

The presence of distortions can also be inferred from the observed dispersion in revenue
productivity (TFPR) across firms, which is defined as physical productivity (TFPQ)
multiplied by the output price of firm i9.

TFPQis = θis =
Yis

Kαs
is L

βs
is E

1−αs−βs
is

(20)

TFPRis = Pisθis =
PisYis

Kαs
is L

βs
is E

1−αs−βs
is

(21)

9The definition of revenue productivity and its distinction from physical productivity is presented in
Foster et al. (2008).
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Revenue productivity can be written as a function of the marginal revenue product of
inputs:

TFPRis =
1

σ − 1

(
MRPKis

αs

)αs (MRPLis
βs

)βs ( MRPEis
1 − αs − βs

)1−αs−βs
(22)

Substituting the expressions for each marginal revenue product, we finally obtain the
expression for TFPR which we take to the data:

TFPRis = σ
σ−1

(
R
αs

)αs (
w
βs

)βs (
T

1−αs−βs

)1−αs−βs (1+τKis)
αs (1+τEis)

1−αs−βb

(1−τY is) (23)

From equation 23, we see that if firm-specific distortions are zero, revenue productivity
is constant and depends only on parameter values. Hence, TFPR dispersion across firms
results exclusively from distortions τY is, τKis and τEis. If resources were allocated based on
firms’ physical productivity, then the output of the most productive firms would increase,
and their prices would decrease such that TFPR would be constant in equilibrium.

From the expression above, we can define industry TFP as a function of firms’ TFP,
weighted by their TFPR relative to the industry average.

TFPs =

[
Ms∑
i=1

(
θis

TFPRs
TFPRis

)σ−1
] 1
σ−1

(24)

Where the average revenue productivity, TFPR, in industry s is given by:

TFPRs = σ
σ−1

(
R

αs
∑Ms
i=1

1−τY is
1+τKis

PisYis
PsYs

)αs (
w

βs
∑Ms
i=1(1−τY is)

PisYis
PsYs

)βs (
T

1−αs−β
∑Ms
i=1

1−τY is
1+τEis

PisYis
PsYs

)1−αs−βs
(25)

We can now derive an expression that allows us to compute physical productivity from
the data. We can infer firm output from revenue at a given elasticity of demand, since this
elasticity σ implies a direct relationship between firms’ revenues, quantities and prices.

θis = κs
(PisYis)

σ
σ−1

Kαs
is L

βs
is E

1−αs−βs
is

, where κs = w1−αs (PsYs)
− 1
σ−1

Ps
(26)

The scalar κ depends on the value of Ps, which is not observable in the data.
Nevertheless, κs is constant across firms in industry s, and so does not affect relative
productivities and potential reallocation gains. We will therefore set κ = 1.

In the absence of firm-specific distortions, marginal revenue products are equalized across
firms and industry TFP is given by:

θs =

(
Ms∑
i=1

θσ−1
is

) 1
σ−1

(27)
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Finally we can define the relationship between actual and efficient levels of aggregate
output. First we calculate the ratio of actual to efficient TFP for each industry, then
aggregate this measure by considering industries’ output shares.

Y

Yefficient
=

S∏
s=1

[
Ms∑
i=1

(
θis

θs

TFPRs
TFPRis

)σ−1
] ρs
σ−1

(28)

This expression quantifies aggregate losses due to the inefficient use of resources
between firms. It allows us to compute the potential aggregate output gains if resources
were efficiently allocated within all industries.

5 Potential gains

So far, we have shown that there is considerable variation in the degree of energy
misallocation at the industry level. We also provide evidence that energy misallocation is
positively related to overall resource misallocation. In this section, our aim is to quantify
resource misallocation in Brazil. We use the model developed by Hsieh & Klenow (2009)
to quantify potential aggregate productivity gains taking into consideration the existence
of distortions affecting firms’ electricity use.

Empirical evidence reveals that the allocation of resources across firms is not only
determined by their productivity levels, but also by other external factors affecting firm
input choices, for example, labor market regulations, financial constraints, fiscal benefits or
subsidized credit. Given industries’ productivity distribution, the misallocation of
resources across firms reduces potential industry and aggregate output (Restuccia &
Rogerson 2008, Buera et al. 2011, Bartelsman et al. 2013, Hsieh & Klenow 2009). The
theoretical framework presented in Section 4 provides a way of identifying distortions
affecting firms’ input choices and, consequently, enables us to compute how much
aggregate productivity would increase in a hypothetical situation where all distortions are
eliminated. Lastly, we provide additional evidence on the determinants of misallocation by
computing potential aggregate gains in counterfactual scenarios, to identify the relative
importance of distortions.

We take the model to the data by measuring labor inputs as labor compensation, to
account for heterogeneity in human capital. We later show how results are robust to defining
labor as firm employment. We set industry capital shares, αs, and labor shares, βs, to those
observed in the data for each industry. Industry shares are calculated based on aggregate
value added.

Following Hsieh & Klenow (2009), we set the rental price of capital to R = 0.1,
considering a 0.05 interest rate and 0.05 depreciation rate. We also set the elasticity of
substitution between differentiated goods as σ = 3, although we analyze the response of
our results to a larger value of σ in our robustness checks in Section 6. We set electricity
prices to 440 R$/kWh, the average electricity price in our sample of firms.

To avoid our results being driven by outlier firms, we compute TFPQ and TFPR for
all firms in a given year, then drop the top and bottom 1% firms in the distribution of
log(TFPRis/TFPRs) and log(θis/θs) across industries. Once we drop outlier firms, we
compute once again industry measures Ls, Ks, Es, PsYs, TFPRs and θs, and industry
shares ρs.
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Figure 4 plots the distribution of physical productivity, log(θisM
1

σ−1
s ) for 2015, the latest

year in our sample. There is considerable dispersion in physical productivity across firms.
The heavy left tail of productivity distribution is consistent with theoretical and empirical
evidence documenting that misallocation worsens selection and allows unproductive firms
to artificially survive alongside productive ones.

Figure 4: Distribution of TFPQ
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Notes: Distribution of physical productivity, log(TFPQisM
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s ), where

TFPQis ≡ Yis

KαisL
β
isE

1−α−β
is

.

Table 5 plots some concrete measures of dispersion for physical productivity,
log(TFPQ), in 2007, 2011 and 2015: the standard deviation, the difference between the
75th and 25th percentiles and between the 90th and 10th percentiles. In 2015, the ratio of
physical productivity between the 75th and 25th percentiles in Brazil was 3.85, while the
ratio between the 90th and 10th percentiles was equal to 15.48. To provide an idea for the
magnitude of this dispersion, we can compare this result to the one in Hsieh & Klenow
(2009). They report that, for the latest year in each sample, the ratio between the 75th

and 25th percentiles is equal to 5.0 in India, 3.6 in China and 3.2 in the United States10.
Figure 5 plots the distribution of revenue productivity TFPR, log(TFPRis/TFPRs),

for Brazilian manufacturing firms in 2015. Table 6 presents dispersion statistics for three
years of the sample, 2007, 2011 and 2015. Our model implies that, in the absence of
distortions, revenue productivity is constant across firms. Hence, the dispersion of TFPR
depicted in Figure 5 and Table 6 illustrates the degree of misallocation in the Brazilian
economy. The dispersion of TFPR is increasing from 2007 to 2011, implying a reallocation
of resources towards unproductive firms. From 2011 to 2015, the dispersion of TFPR
remains roughly constant. Overall, there is a deterioration in resource allocation efficiency
from 2007 to 2015, but the magnitude of this change is small. In 2007, the ratio of revenue

10When comparing our results to those of Hsieh & Klenow (2009) and other studies, we should take
into consideration that the sampling frame and period are different for each country. Comparisons between
countries should be made with caution.
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Table 5: Dispersion of TFPQ

2007 2011 2015
S.D. 1.07 1.09 1.16
75 - 25 1.22 1.29 1.35
90 - 10 2.49 2.59 2.74
N 25,334 30,386 25,135

Notes: This table plots dispersion measures of physical productivity, log(TFPQ). For

plant i in industry s, TFPQis ≡ Yis

KαisL
β
isE

1−α−β
is

. S.D. = standard deviation, 75-25 =

difference between 75th and 25th percentiles, 90-10 = difference between 90th and 10th

percentiles. N = number of observations. Data from PIA and RAIS.

productivity between the 75th and 25th percentiles was equal to 2.36, and by 2015 it had
decreased to 2.38. Hsieh & Klenow (2009) reports ratios of 2.2 in India, 2.3 in China and
1.7 in the United States, suggesting a higher degree of misallocation of resources in Brazil
relative to the U.S.

Figure 5: Distribution of TFPR
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We now calculate the potential gains in aggregate manufacturing productivity from
equalizing the marginal product of inputs within each three-digit industry. Unlike Hsieh &
Klenow (2009), we do not use the United States as a benchmark for the minimum
dispersion in marginal products that can be achieved in practice. A full equalization of
TFPR across firms might not be feasible due to the presence of measurement error in the
data, adjustment costs or markup variation, for example, which are omitted from the
model. Thus, our results should be interpreted as an upper bound for potential output
gains in mining and manufacturing, given our sample of firms.

The ratio of actual aggregate output to efficient output is computed for each industry
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Table 6: Dispersion of TFPR

2007 2011 2015
S.D. 0.73 0.76 0.76
75 - 25 0.86 0.88 0.87
90 - 10 1.78 1.85 1.85
N 25,334 30,386 25,135

Notes: This table plots dispersion measures of revenue productivity, log(TFPR). For

plant i in industry s, TFPRis ≡ PisYis

KαisL
β
isE

1−α−β
is

. S.D. = standard deviation, 75-25 =

difference between 75th and 25th percentiles, 90-10 = difference between 90th and 10th

percentiles. N = number of observations. Data from PIA and RAIS.

according to:

Y

Yefficient
=

S∏
s=1

[
Ms∑
i=1

(
θis

θs

TFPRs
TFPRis

)σ−1
] ρs
σ−1

(29)

From equation 29, we compute potential aggregate output gains as (Yefficient/Y ) − 1.
Table 7 presents the potential aggregate output gains in Brazil for 2007 to 2015. Our
estimates imply that reallocating resources to the point of fully equalizing TFPR within
industries would lead to output gains ranging from 77.9% to 96.2%. These results are
comparable to the 86% gains estimated for China by Hsieh & Klenow (2009), and 85%
gains reported for South Korea by Kim et al. (2017). Busso et al. (2013) perform similar
estimates for the Brazilian manufacturing sector, for years from 2000 to 2005. Their results
imply aggregate productivity gains that are lower than ours, ranging from 41 to 49%.

The potential gains from eliminating misallocation reported in Table 7 fluctuate from
2007 to 2012, and are falling from 2012 onwards. Overall, there was an increase in
potential gains during the whole period, from 81.7% in 2007 to 83.2% in 2015. This result
is consistent with increasing TFPR dispersion over the sample period, indicating a rise in
the misallocation of resources.

The results derived from the model are consistent with our findings in Section 3, that
resource allocation efficiency has deteriorated from 2007 to 2015. Nevertheless, this
relationship is not very clear from the estimated potential gains from reallocation, and
there are some years for which gains increase significantly. One possibility for these
inconsistent results is that the potential gains computed from the model are being affected
by changes in the composition of firms, or by changes in the level of available technology.

As described in Section 2, our data does not include firms with less than 30 workers. We
expect our estimated potential gains to underestimate the true potential gains from resource
reallocation, since there is a negative relationship between size and overproduction (Kim
et al. 2017). This evidence supports the fact that distortions and misallocation allow the
survival of small, unproductive firms.

From equation 29, we are able to compute not only aggregate output gains, but also
gains for each manufacturing industry separately. It is important to note that, due to
confidentiality reasons, we cannot provide any statistics that were computed with less than
4 observations. So although all industries were considered for the computation of aggregate
gains reported above, we cannot report individual gains for 3 specific industries11. Taking

11These industries are: Mining of coal and lignite; Reproduction of recorded media; Manufacture of
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Table 7: Potential TFP gains (%)

Year TFP Gains (%)
2007 81.72
2008 77.96
2009 96.26
2010 85.19
2011 92.58
2012 93.78
2013 90.30
2014 88.52
2015 83.26

Notes: Potential productivity
gains from equalizing TFPR
within industries, computed as

100(
Yefficient

Y
− 1), where Y

Yefficient
=∏S

s=1[
∑Ms
i=1

(
θis
θs

TFPRs
TFPRis

)σ−1
]
ρs
σ−1 and

TFPRis ≡ PisYis

KαisL
β
isE

1−α−β
is

.

this restriction into consideration, Table 8 presents the top 10 industries with the highest
and the lowest potential gains from fully equalizing marginal products across firms in 2015.

The activity with highest potential gains from resource reallocation is manufacturing of
refined petroleum products, where efficient allocation would lead to an increase in output of
290.4%. We can infer that in industries with the highest potential gains, distortions are more
relevant in affecting firms’ sizes, resulting in misallocation and the coexistence of productive
and unproductive firms. The most efficient industry in our sample is the manufacture of
musical instruments, where reallocating resources across firms would increase output in
15.7%. In this industry, firms’ input use closely reflects their physical productivity levels.
One interesting fact from Table 8 is that the dispersion in potential gains from industries
with highest misallocation (highest potential gains) is much higher than the dispersion
observed for the most efficient industries.

Finally, we focus on understanding the role of distortions in generating resource
misallocation. Table 9 provides estimates of aggregate potential gains from eliminating a
subset of, but not all, distortions simultaneously. We consider only the last year in our
sample, 2015. The first line of Table 9 tells us that by eliminating distortions affecting the
allocation of capital relative to labor, τKis, aggregate productivity would increase by
30.3%. However, eliminating electricity distortions, τEis, would lead to a productivity level
only 2.4% higher.

If we compute hypothetical gains from eliminating misallocation generated by output
distortions, τY is, in addition to capital or electricity distortions, productivity gains would
be 83.5% and 5.9%, respectively. Lastly, simultaneously eliminating capital and electricity
distortions would result in productivity gains of 33.0%. This experiment reveals that
although all distortions, τY is, τKis and τEis, play a part in generating overall
misallocation, distortions that affect the cost of capital relative to labor, along with output
distortions, account for most of the resource misallocation observed in Brazil.

weapons and ammunition.
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Table 8: Highest and lowest gains from equalizing TFPR (%)

Panel A: Industries with highest potential gains
CNAE Industry description TFP gains

192 Manufacture of refined petroleum products 290.44
182 Service activities related to printing 171.10
221 Manufacture of rubber products 154,82
161 Sawmilling and planing of wood 146.31
241 Manufacture of pig iron and iron alloys 139.78
202 Manufacture of inorganic chemicals 139.16
285 Manufacture of machinery for mining, quarrying and construction 139.07
105 Manufacture of dairy products 138.85
232 Manufacture of cement 138.84
309 Manufacture of other transport equipment n.e.c. 137.66

Panel B: Industries with lowest potential gains
CNAE Industry description TFP gains

272 Manufacture of batteries and accumulators 25.30
291 Manufacture of cars 25.10
303 Manufacture of railway locomotives and rolling stock 25.07
072 Mining of non-ferrous metal ores 24.56
263 Manufacture of communication equipment 24.55
122 Manufacture of tobacco products 23.77
171 Manufacture of pulp 21.92
121 Processing of tobacco 19.99
295 Engine restoration and rebuilding for motor vehicles 17.65
322 Manufacture of musical instruments 15.81

Notes: This table presents the top 10 industries with highest potential gains from reallocating
resources resulting in constant TFPR within industries (Panel A), and the top 10 industries

with the lowest potential gains (Panel B). Gains are computed as 100(
Yefficient

Y
− 1), where

Y
Yefficient

=
∏S
s=1[

∑Ms
i=1

(
θis
θs

TFPRs
TFPRis

)σ−1
]
ρs
σ−1 and TFPRis ≡ PisYis

KαisL
β
isE

1−α−β
is

.

Table 9: TFP gains from equalizing TFPR within industries (%)

Distortions Gains in 2015 (%)
τK 30.30
τE 2.47
τK , τE 33.08
τY , τK 83.54
τY , τE 5.96

Notes: Potential productivity gains assuming
the presence of different combinations of
distortions, depicted in the first column. Gains

are computed as 100(
Yefficient

Y
− 1), where

Y
Yefficient

=
∏S
s=1[

∑Ms
i=1

(
θis
θs

TFPRs
TFPRis

)σ−1
]
ρs
σ−1 and

TFPRis ≡ PisYis

KαisL
β
isE

1−α−β
is

.
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6 Robustness checks

In this section, we provide robustness checks to understand how our results are affected
by slight modifications in our assumptions and parameter values.

First, we test how the relationship between energy and resource misallocation from
Figure 3 is altered when we use different productivity measures to compute the degree of
resource misallocation.

In Figure 6, we plot this relationship using a TFP productivity measure considering
labor, capital and electricity as inputs. We also compute the physical productivity, TFPQ,
defined in Section 4, and plot the results in Figure 7. As we can see, the positive relationship
between resource and energy misallocation measures across industries is not affected by these
alternative productivity measures. Figure 8 shows that the positive relationship between
energy and resource allocation efficiency is not altered by our decision to calculate these
measures for 2015, instead of pooling observations from all year.

Next, we analyze how our baseline results from quantifying potential reallocation gains
in Table 7 are robust to measuring firm size as the number of employees, instead of labor
compensation. In our baseline estimation, we measure labor inputs as labor compensation
to control for differences in skills and hours worked across firms. However, Hsieh &
Klenow (2009) argue that it is possible that wages are determined by other factors, such as
rent sharing between firms and workers. The first line in Table 10 shows that, when
measuring labor as the number of employees, potential reallocation gains in 2015 are equal
to 92.78%, compared to 83.26% from our baseline estimates. Hsieh & Klenow (2009) find
that measuring labor inputs with employment decreases potential gains, and they interpret
these findings as evidence that wages amplify TFPR differences. For Brazil, wages reduce
TFPR differences.

As a final robustness check, we examine how a larger elasticity of substitution between
differentiated products, σ, affect our results. By setting σ to 5, potential gains from resource
reallocation increase from 83.26% in our baseline estimates to 172.31%, as presented in the
second line of Table 10. This illustrates how our baseline results should be interpreted as a
lower bound to potential gains.

Table 10: TFP gains from equalizing TFPR within industries (%)

Distortions 2007 2011 2015
Lis 86.69 98.23 92.78
σ = 5 157.12 171.99 172.31

Notes: Robustness checks for potential productivity gains from equalizing TFPR
within industries. Lis: firm labor is measured as number of workers. σ = 5:
elasticity of substitution between differentiated goods is set as 5. Gains are computed

as 100(
Yefficient

Y
− 1), where Y

Yefficient
=
∏S
s=1[

∑Ms
i=1

(
θis
θs

TFPRs
TFPRis

)σ−1
]
ρs
σ−1 and

TFPRis ≡ PisYis

KαisL
β
isE

1−α−β
is

.

7 Conclusions

We use detailed firm-level data with information on electricity expenditures for Brazil,
and we find that the degree of resource and energy misallocation are positively related,
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both at the industry and aggregate levels. This result has important policy implications,
since it indicates that there is no trade-off between productive efficiency and
environmental gains. Policies promoting the growth of the most productive firms in every
industry will lead not only to better resource allocation and higher aggregate productivity,
but also improve aggregate energy efficiency and reduce negative externalities associated
with energy generation and consumption.

We also find that, since 2007, resources were reallocated towards unproductive firms,
increasing resource and energy misallocation. Our results suggest that this was the main
factor limiting aggregate productivity and energy efficiency growth in Brazil during this
period. Our finding suggest that it is more effective to focus on industrial initiatives than
on firm-level ones to improve aggregate energy efficiency in Brazilian industry. Efficiency in
energy allocation provides a potential source of improvement in aggregate energy efficiency
without the need for technological innovation.

In order to quantify aggregate gains from resource reallocation we apply the model
in Hsieh & Klenow (2009) taking into consideration distortions that affect firms’ energy
use. Although our estimates reveal substantial gains from resource reallocation, capital
distortions are relatively more important than energy distortions in generating resource
misallocation and productivity losses.

This implies that it is crucial that policymakers design broader industrial policies to
tackle distortions that are more binding than energy efficiency distortions. This would
make room for programs that target industrial energy efficiency. Still, the existence of
energy misallocation implies that potential gains from improving the allocation of overall
resources in the economy would not only increase aggregate productivity but also raise
well-being by reducing emissions and energy use.

One limitation from our work is that we consider only one energy source: electricity.
Other energy sources could be particularly important for some industries, resulting in
imprecision of our energy efficiency estimates. In the near future, it will be very important
to evaluate how our results regarding allocation of energy and resources change when we
use electricity priced to recover electricity consumption. Our next steps also include
evaluating how electricity distortions identified by our theoretical framework are related to
energy efficiency levels. This analysis would illustrate the role of resource reallocation in
improving aggregate energy efficiency.
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Löfgren, Å., Millock, K. & Nauges, C. (2008), ‘The effect of uncertainty on pollution
abatement investments: Measuring hurdle rates for Swedish industry’, Resource and
Energy Economics 30(4), 475–491.

Melitz, M. J. (2003), ‘The impact of trade on intra-industry reallocations and aggregate
industry productivity’, Econometrica 71(6), 1695–1725.

Olley, G. S. & Pakes, A. (1996), ‘The dynamics of productivity in the telecommunications
equipment industry’, Econometrica 64(6), 1263–1297.
URL: https://ideas.repec.org/a/ecm/emetrp/v64y1996i6p1263-97.html

Ostertag, K. (2012), No-regret potentials in energy conservation: An analysis of their
relevance, size and determinants, Heidelberg: Springer Science & Business Media.

Restuccia, D. & Rogerson, R. (2008), ‘Policy distortions and aggregate productivity with
heterogeneous establishments’, Review of Economic dynamics 11(4), 707–720.

Rohdin, P., Thollander, P. & Solding, P. (2007), ‘Barriers to and drivers for energy efficiency
in the Swedish foundry industry’, Energy Policy 35(1), 672–677.

Ryan, N. (2015), Is there an energy-efficiency gap? Experimental evidence from Indian
manufacturing plants, Working Paper, Yale University.

25



A Appendix

Table 11: Three-digit CNAE industries

CNAE Activity description
05.0 Mining of coal and lignite
06.0 Extraction of crude petroleum and natural gas
07.1 Mining of iron ores
07.2 Mining of non-ferrous metal ores
08.1 Quarrying of stone, sand and clay
08.9 Mining and quarrying n.e.c.
09.1 Support activities for petroleum and natural gas extraction
09.9 Support activities for other mining and quarrying
10.1 Processing and preserving of meat
10.2 Processing and preserving of fish, crustaceans and molluscs
10.3 Processing and preserving of fruit and vegetables
10.4 Manufacture of vegetable and animal oils and fats
10.5 Manufacture of dairy products
10.6 Manufacture of grain mill products, starches and starch products
10.7 Manufacture of sugar
10.8 Manufacture of coffee products
10.9 Manufacture of other food products
11.1 Manufacture of alcoholic beverages
11.2 Manufacture of non-alcoholic beverages
12.1 Processing of tobacco
12.2 Manufacture of tobacco products
13.1 Spinning, weaving of textiles
13.2 Manufacture of other textiles, except crocheted and knitted
13.3 Manufacture of knitted and crocheted textiles
13.4 Finishing of textiles
13.5 Manufacture of made-up textile articles, except apparel
14.1 Manufacture of wearing apparel
14.2 Manufacture of knitted and crocheted apparel
15.1 Tanning and dressing of leather
15.2 Manufacture of leather luggage, handbags, saddlery and harness
15.3 Manufacture of footwear
15.4 Manufacture of footwear parts
16.1 Sawmilling and planing of wood
16.2 Manufacture of products of wood, cork, straw and plaiting materials
17.1 Manufacture of pulp
17.2 Manufacture of paper and paperboard
17.3 Manufacture of containers of paper and paperboard
17.4 Manufacture of other articles of paper and paperboard
18.1 Printing
18.2 Service activities related to printing
18.3 Reproduction of recorded media
19.1 Manufacture of coke oven products
19.2 Manufacture of refined petroleum products
19.3 Manufacture of biofuels
20.1 Manufacture of organic chemicals
20.2 Manufacture of inorganic chemicals
20.3 Manufacture of plastics and synthetic rubber in primary forms
20.4 Manufacture of man-made fibres
20.5 Manufacture of pesticides and other agrochemical products
20.6 Manufacture of soap and detergents, cleaning and polishing preparations,

perfumes and toilet preparations
20.7 Manufacture of paints, varnishes and similar coatings, printing

ink and mastics
20.9 Manufacture of other chemical products
21.1 Manufacture of medicinal chemical products
21.2 Manufacture of pharmaceuticals
22.1 Manufacture of rubber products
22.2 Manufacture of plastics products
23.1 Manufacture of glass and glass products
23.2 Manufacture of cement
23.3 Manufacture of articles of concrete, cement and plaster
23.4 Manufacture of ceramic products

Continued on next page
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Table 11 – Continued from previous page
CNAE Activity description
23.9 Manufacture of other non-metallic mineral products n.e.c
24.1 Manufacture of pig iron and iron alloys
24.2 Manufacture of steel
24.3 Manufacture of steel tubes
24.4 Manufacture of basic precious and other non-ferrous metals
24.5 Casting of metals
25.1 Manufacture of structural metal products
25.2 Manufacture of tanks, reservoirs and containers of metal
25.3 Forging, pressing, stamping and roll-forming of metal; powder metallurgy
25.4 Manufacture of cutlery, hand tools and general hardware
25.5 Manufacture of weapons and ammunition
25.9 Manufacture of other fabricated metal products n.e.c.
26.1 Manufacture of electronic components and boards
26.2 Manufacture of computers and peripheral equipment
26.3 Manufacture of communication equipment
26.4 Manufacture of equipment for reproducing, recording

and amplifying audio and video
26.5 Manufacture of measuring, testing, navigating and control equipment;

watches and clocks
26.6 Manufacture of irradiation, electromedical and electrotherapeutic equipment
26.7 Manufacture of optical instruments and photographic equipment
26.8 Manufacture of magnetic and optical media
27.1 Manufacture of electric motors, generators, transformers and
27.2 Manufacture of batteries and accumulators
27.3 Manufacture of electricity distribution and control apparatus
27.4 Manufacture of electric lighting equipment
27.5 Manufacture of domestic appliances
27.9 Manufacture of other electrical equipment
28.1 Manufacture of engines, pumps, compressors, gears, taps and valves
28.2 Manufacture of general-purpose machinery
28.3 Manufacture of agricultural and forestry machinery
28.4 Manufacture of machine tools
28.5 Manufacture of machinery for mining, quarrying and construction
28.6 Manufacture of special-purpose machinery
29.1 Manufacture of cars
29.2 Manufacture of trucks and buses
29.3 Manufacture of bodies (coachwork) for motor vehicles;

manufacture of trailers and semi-trailers
29.4 Manufacture of parts and accessories for motor vehicles
29.5 Engine restauration and rebuilding for motor vehicles
30.1 Building of ships and boats
30.3 Manufacture of railway locomotives and rolling stock
30.4 Manufacture of aircrafts
30.5 Manufacture of military fighting vehicles
30.9 Manufacture of other transport equipment n.e.c.
31.0 Manufacture of furniture
32.1 Manufacture of jewellery, bijouterie and related articles
32.2 Manufacture of musical instruments
32.3 Manufacture of sports goods
32.4 Manufacture of games and toys
32.5 Manufacture of medical and dental instruments and supplies
32.9 Other manufacturing n.e.c.
33.1 Repair of fabricated metal products, machinery and equipment
33.2 Installation of industrial machinery and equipment
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Figure 6: Resource and energy misallocation (TFP)
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Notes: Measures of energy allocation, λes, and resource allocation,
λθs , plotted for each of the 106 three-digit industries in our database.
Productivity of firm i in sector s, θsi, is total factor productivity estimates
assuming a production function with capital, labor and electricity inputs.
Data from PIA and RAIS.

Figure 7: Resource and energy misallocation (TFPQ)
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Notes: Measures of energy allocation, λes, and resource allocation,
λθs , plotted for each of the 106 three-digit industries in our database.
Productivity of firm i in sector s, θsi, is computed as value added per
worker. Data from PIA and RAIS.
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Figure 8: Resource and energy misallocation (2015)
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Notes: Measures of energy allocation, λes, and resource allocation, λθs ,
plotted for each of the 106 three-digit industries in our database. Data
from PIA and RAIS.
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