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Abstract

When deforestation laws are difficult to enforce, increased agricultural pro-

ductivity and intensification are used as an indirect policy tools to reduce the

pressure to clear forests for new land, a strategy known as the “Borlaug hypoth-

esis”. Increasing productivity can have ambiguous effects on forest protection

in theory: it can expand the scope of farming, which is detrimental to the for-

est, but it can also induce farmers facing factor-market constraints to shift away

from land-intensive cattle grazing toward less-harmful crop cultivation. We ex-

amine these predictions using five waves of the Brazil Agricultural census, 1970

- 2006. We identify productivity shocks using the expansion of rural electrifi-

cation in Brazil during 1960-2000. We show that electrification increased crop

productivity, and farmers subsequently both expand farming through frontier

land conversion, but also shift away from cattle ranching and into crop culti-

vation. The latter allows farmers to retain more native vegetation within rural

settlements. Overall, electrification causes a net decrease in deforestation. We

also show that Brazilian farmers are credit constrained and invest more in capi-

tal following electrification, consistent with the theory we build. We address the

endogeneity of electrification by developing a model that forecasts hydropower

dam placement based on topographic attributes of each location, and isolate the

exogenous portion of the panel variation in electrification.

Keywords: Electricity, Hydro-power, Agriculture, Productivity, Deforestation, Brazil
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1 Introduction

The rapid loss of major tropical forest ecosystems has been one of the major envi-
ronmental disasters of the last century. Nearly 20% of recent global greenhouse gas
emissions are attributed to tropical deforestation (Stern, 2008). The vast biodiversity
across large, diverse ecological zones of Brazil, along with the agricultural potential
that land represents, makes the country singularly important in the tension between
development and environmental sustainability. While there has been a deceleration
in the rate of deforestation in Brazil recently, 78,564 square kilometers of forest cover
was lost in the last seven years, and the scale of the problem therefore remains enor-
mous (MMA, 2013).

Deforestation is intricately tied to decisions on land use for agricultural production. 1

Agricultural productivity in frontier areas, and land intensity of the type of farming
that gets practiced – crop cultivation versus cattle grazing – are the key determinants
of deforestation. Brazil produces over a hundred billion dollars annually through
large-scale crop cultivation, and ranks among the world’s three largest producers
of sugarcane, soybeans and maize. Crop output increased 365% between 1996 and
2006, and Brazil has been dubbed “the farm that feeds the world” (The Economist,
August 26, 2010). Brazil is also the world’s largest exporter of beef, with a ten-fold
increase in exports during that decade. Many farmers engage in both cultivation and
cattle-grazing simultaneously.

Cattle grazing and crop cultivation pose very different risks for deforestation, and
this margin of land use decisions will be central to our analysis. Cattle grazing is
extremely land intensive with limited use of confinement in Brazil, and the aver-
age stocking ratio reported in the 2006 agricultural census was less than 1 head per
hectare. In contrast, crop cultivation accounted for only 10.6% of total farm area, but
60% of the value of output in 2006 (IBGE). Increasing crop productivity can therefore
have ambiguous effects on deforestation in theory. It has the potential to curb defor-
estation by inducing land conversion away from grazing and into more intensive
cropping, but it could also induce expansion of agriculture into frontier lands.

This paper starts by developing a framework that allows for both the intensification
effect (Borlaug’s hypothesis) as well as the expansion effect. In our model, farmers
engage in two activities that are different with respect to their factor intensities –
we label the more land-intensive activity “cattle grazing” and the capital-intensive

1While logging is often the proximate cause of land clearing, re-growth occurs in most moist
tropical forests. For areas to remain deforested in the longer term, the propensity to convert the land
to agricultural use matters most.
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activity “crop cultivation”. The farmer faces a factor market constraint that limits
growth. Any productivity shock biased towards cropping will induce farmers to
switch into cultivation and decrease the land allocation to grazing. The shift away
from the activity that is more land intensive decreases overall land use, and bene-
fits native vegetation. On the extensive margin, increased agricultural productivity
induces new people to move into farming, which has the opposite effect on defor-
estation. The overall effect on deforestation is therefore theoretically ambiguous, and
this motivates our empirical inquiry.

The empirical exercise uses the impressive expansion of the electricity grid in Brazil
during the period 1960-2000 that electrified many frontier areas and farms as a mea-
sure of a shock to agricultural productivity. Using county-level data, we first docu-
ment that electricity access increases cropping productivity more than cattle grazing
productivity. Next, we show that farmers (i) allocate less land to pastures, (ii) leave
more land in native vegetation, and (iii) invest in more capital following an increase
in electricity infrastructure. Although cropland as fraction of total farmland remains
unchanged, farmers substitute subsistence varieties for the ones that benefit most
from electricity. Finally, we find weak evidence that the increase in agricultural pro-
ductivity leads to an expansion in farming and induces frontier land conversion.
Overall, our empirical results are consistent with our framework, and suggest that
electrification causes a net decrease in deforestation in Brazil.

To address the endogeneity issues inherent in infrastructure data (where investment
may follow demand), we use the IV estimation strategy developed in Lipscomb
et al. (2013). We forecast hydropower dam placement and transmission grid ex-
pansion based on exogenous topographic attributes of each location. The forecast-
ing model produces hypothetical maps that show, given the constrained budget of
generation plants for each decade, how the electrical grid would have evolved had
infrastructure allocation been based solely on cost considerations, ignoring demand-
side concerns. The maps isolate the portion of the panel variation in electricity grid
expansion that is attributable to engineering cost considerations, and thereby pro-
vide exogenous variation in electricity access which we use as an instrument for
actual electrification. Our empirical strategy takes advantage of the fact that Brazil
relies almost exclusively on hydropower to meet its electricity needs. The cost of hy-
dropower dam construction depends on topographic factors such as water flow and
river gradient, since hydropower generation requires intercepting large amounts of
water at high velocity. The forecasting model includes location fixed effects to con-
trol for the fixed geographic attributes, so that the identification comes only from
discontinuities in the ranking of different locations’ suitability for dam construction,
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given the decade-specific budget constraints.

An assumption underlying strategies aimed at reducing deforestation through in-
creased investment in capital for rural farms is that increased productivity will lead
to agricultural intensification which reduces the pressure to clear forests for new
land, rather than expand the scope of farming. Our model indicates that this a po-
tentially dangerous strategy, because it has ambiguous effects on land use in theory.
Our empirical results indicate that productivity-enhancing strategies did allow for
decreased net deforestation in Brazil over the period 1970-2000. Improvements in
agricultural productivity appear to be a promising avenue for environmental protec-
tion when regulators’ capacity to enforce forest protection laws is weak. Our analysis
suggests that the net effect on deforestation will depend on the type of activity that
gets displaced when agriculture becomes more productive. In Brazil, the prolifer-
ation of land-intensive cattle grazing makes improved cultivation beneficial for the
environment.

The beneficial environmental effect of the expansion in electricity infrastructure stands
in contrast to Pfaff (1999), Cropper et al. (1999) and Cropper et al. (2001), who show
that road infrastructure aids deforestation in Brazil and Thailand, respectively. Stavins
and Jaffe (1990) find that flood-control infrastructure projects account for 30 percent
of forested wetland depletion in the Mississippi Valley by affecting private land use
decisions. Our nuanced findings on the opposing effects of infrastructure develop-
ment on deforestation contribute to a long-standing literature on the non-monotonic
relationship, also known as the Environmental Kuznets Curve (EKC), between eco-
nomic growth and environmental outcomes, starting with Grossman and Krueger
(1991, 1995). The existing empirical evidence on the EKC is mixed and mostly based
on cross-country regressions, see Foster and Rosenzweig (2003) and Cropper and
Griffiths (1994).

Our paper is also related to the literature on technology adoption in agriculture
(BenYishay and Mobarak, 2014), (Conley and Udry, 2010). It is most closely related
to papers on causes and consequences of irrigation technology in the United States
(Hornbeck and Keskin, 2014) and in India (Sekhri, 2011). We also contribute to a
rapidly growing literature on the effects of electrification (Dinkelman, 2011; Rud,
2012; Lipscomb et al., 2013)) and other forms of infrastructure (Duflo and Pande,
2007; Donaldson, ming) on development.

The paper is organized as follows: section 2 discusses historical land use in Brazil,
the vast growth in the electricity network during the period 1960-2000, and the ex-
pansion of the use of irrigation. Section 3 discusses a simple theoretical model which
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we use to investigate the contrasting impacts of increased agricultural productivity
on land use: the increased intensity of agricultural productivity, versus the poten-
tial for expansion across increased land area as agriculture becomes more profitable.
Section 4 discusses the three key datasets that we use–the Census of Agriculture in
Brazil, Electricity Data from various historical archives in Brazil and elevation maps
from USGS, and rainfall data. Section 5 discusses our estimation strategy and the in-
strumental variable technique we employ. Section 6 discusses the empirical results,
and section 7 concludes.
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2 Background

Large scale deforestation in Brazil has resulted in a 19% decrease in forest cover in the
Amazon since 1970 . This deforestation was, in large part, a result of the widespread
expansion of agriculture . The conflict between the forest and agricultural land uses
is particularly pronounced in areas of Brazil with lower distances and transport costs
to major markets: Northern Brazil, the Pantanal and the Cerrado (citation?). This ex-
pansion in farmland has occurred at the same time as a widespread increase in farm
productivity stemming from improved seed varieties, improved farming techniques,
and increased use of capital in farming. In this section, we discuss the increase in
productivity in the agricultural sector and the reallocation in land use in farming
that has occurred over the past 50 years.

2.1 The Increase in Agricultural Productivity in Brazil

Agricultural productivity in Brazil has increased significantly since 1970, as Brazil
closes the gap between agricultural productivity in Brazil and the US (Viera Filho
and Fornazier, 2016). This increase in productivity has depended in large part on the
ability of farmers to invest in new farming technology, and has varied substantially
across regions of Brazil (Viera Filho Santos and Fornazier, 2013).

Constraints in Factor Markets The ability to take advantage of productivity im-
provements through new technologies is often dependent on the ability of farmers to
invest in new capital equipment and to hire workers with higher levels of education
than traditional farm labor. One common feature of rural economies in developing
countries is presence of frictions, and ensuing constraints faced by producers in fac-
tor markets (Conning and Udry, 2007). For example, between 1960 and 2006 at least
80 percent of Brazilian farmers had no access to external financing of any sort. Farm-
ers who did obtain credit typically used it for short-term loans to finance materials —
seeds, fertilizer and pesticides — or transportation, as opposed to long-term invest-
ments. Access to other financial products, such as insurance, is even less common
even today. Agricultural labor markets in general, and in developing economies in
particular, are also plagued by informational frictions and strict regulations which
create constraints for producers to hire labor. In Brazil, these problems have been
compounded by a massive rural-urban migration which decreased labor supply in
rural labor markets: the fraction of the population living in rural areas decreased
from 64 percent in 1950 to 19 percent in 2000.
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Electricity and Agricultural Productivity Many of the new technologies for irri-
gation and storage of farm production require the use of electricity. In 2006, one
in five Brazilian farmers reported using electricity in their production. Farmers use
electricity for various purposes in their agricultural production function. One im-
portant use is irrigation. There are two main types of irrigation systems used in
Brazil. Flooding or furrow irrigation typically uses gravity to channel water from a
source located at higher altitudes than the field. This is a traditional, labor and water-
intensive method used for flooding of lowlands in the South for rice production in
the summer since the 1960s. In contrast, sprinkler irrigation systems require energy
to lift groundwater and distributed it. Although diesel can be used to provide en-
ergy for pumps, using electricity is cheaper not only because of the equipment, but
also because of fuel costs. This was particularly true after the oil price shocks in 1973
and 1979, and the expansion of the electricity grid providing cheap energy from hy-
dropower (World Bank, 1990; Rud, 2012). Sprinkler systems has been the preferred
method for crops other than rice in the Center-West, Southeast and Northeast parts
of the country. Specially in the Center-West, irrigation during the dry winters al-
low for two, and sometimes even three harvests of grains (soybeans, maize, cotton)
per growing season, therefore significantly increasing farms’ production value per
hectare of land.

Electricity also enables farmers to adopt various technologies to process their out-
put. For example, post-harvest handling of grains require an array of machinery for
drying grains, including ventilators and conveyor belts, for which electricity is an
important input. Drying grains is important as it enables producers to store their
output and sell it when market prices are good, besides adding value to the output.
Livestock production can also benefit from electricity through mechanized milking,
pasteurizing and cooling of dairy products, and poultry and egg production.

2.2 Evolution of Land Use in Brazilian Farms

Land use trends over the second half of the twentieth century in Brazil are shown
in figure 1, based on data from the Census of Agriculture, described in more detail
in section IV. Farmland expanded considerably, reaching 44 percent of the country’s
territory in 1985, from 29 percent in 1960, a 50 percent increase within 25 years, be-
fore it started slowly decreasing. Brazilian farmers allocate their land between three
main land use categories—pastureland, cropland and native vegetation . At any
point in time between 1960 and 2006, these three categories accounted for 80-90 per-
cent of total farmland . As can be seen, there were major changes in the allocation
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of farmland between these three categories over this period. The share of pasture-
land, which is almost entirely used for cattle grazing, decreased from a peak of 52
percent in 1970 to 48 percent of total farmland in 2006, while the shares of cropland
and native vegetation increased from about 9 and 19 percent to 14 and 29 percent, re-
spectively.2 These trends show a clear expansion of cropland and native vegetation
within farmland, at the cost of pastureland and other uses.

Native Vegetation in Private Properties Native vegetation is an important compo-
nent of our analysis and forms a large component of land use in Brazilian farms. 3

There are potentially many reasons why producers may decide to keep trees in their
properties. Although land is a relatively abundant factor in Brazil, land markets are
plagued with frictions, from weak property rights to regulations in rental markets.
As a result, producers may leave uncultivated land for the sheer reason of not being
able to hire enough labor and capital, nor being able to sell or rent their land. Sec-
ond, there are regulations mandating property owners to keep trees in a fraction of
their land at least since 1934.4 This sort of legislation however can hardly explain
the observed patterns for the period we analyze, as its monitoring and enforcement
has been an historical challenge in Brazil in general, and in rural areas of the coun-
try in particular. Illegal deforestation in the Amazon for example only started to
be more seriously tackled with command-and-control policies after peaking in 2004,
therefore at the very end of our sample period. Third, agro-forestry production is
a source of income and livelihood, specially for smallholders. Although this can
partially explain the presence of native vegetation in farmland, it cannot explain the
increase of native vegetation in farmland at the aggregate level. Over this period,
Brazil’s agriculture became increasingly professional, focused on commodities and
export-oriented; the fact that Brazil became the world’s largest soybean producer
and exporter is the quintessential example of this trend. Given the increased impor-
tance of export-oriented commodities, one would have expected the relative share
of forestry production, and therefore of land allocated to forests in farmland, to de-

2Not surprisingly, these changes mirror changes in productivity (or yield) gains: whereas gross
yields in agriculture have quadrupled over the 1970-2006 period, cattle grazing yields, measured as
heads per hectare, only doubled.

3The presence of trees among agricultural land is a common feature in the tropics, and not specific
to Brazil. Zomer et al. (2014) find that 92 (50) percent of agricultural land in Central America had at
least 10 (30) percent of tree cover in year 2000.

4This legislation, known as the Brazilian Forest Code, was enacted in 1934 and mandated that
every rural property to keep at least 25 percent of its area in native vegetation, in order to guarantee a
stock of wood fuel. The Forest Code was amended in 1965 and then in 2012 after long public debates.
Enforcement of the Forest Code is only now being taken seriously with the help of high-resolution
satellite technology, unavailable even in the early 2000’s.
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crease during this period. Finally, it is possible that producers realize the production
benefits of having biodiversity in their land, but this is a possibility that we cannot
test with our data.

Crops vs Cattle Grazing As practiced in Brazil, cattle gazing and crop cultivation
mix inputs at very different rates. Specifically, cattle grazing is a relatively land-
intensive activity, whereas crop cultivation requires more capital, both physical and
human. For example, in 2006 the value of machinery and equipment per hectare in
the typical livestock farm was one-sixth of that of a typical crop farm. And although
an equal fraction of farms within each activity make investments in machinery and
equipment, investment per farm is also lower in livestock farms. These figures are
not surprising when one notes that only 4 percent of cattle farms uses confinement,
and that only 0.2 percent of producers pasteurize the milk they sell; and that at the
same time, over 60 percent of the harvested area of maize and sugar cane is mech-
anized, as is virtually all of the soybean production in the country. Moreover, crop
cultivation demands more human skills than cattle grazing as practiced in Brazil,
requiring experimentation with techniques and inputs, such as seeds and fertilizers.
In short, the typical cattle grazing farm requires low levels of capital investments
within farm gate when compared to crop farming, a fact that motivates some as-
sumptions in the model we present in Section 3.
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3 Conceptual Framework

In this section we build a simple theoretical framework inspired by the salient fea-
tures of farming and land use in Brazil, with the goal of generating predictions on
how a productivity shock in crop cultivation will affect farming choices and defor-
estation. To mirror the language in our empirical exercise, we refer to the key pro-
ductivity parameter in our model as “availability of electricity”, which is denoted by
Ω. Our model allows farmers to engage in both crop cultivation and cattle grazing
because these are the two major categories of agricultural activities, as indicated in
the previous section and in the agricultural census data.

The economy is endowed with total land of H which is initially completely covered
by native vegetation. A continuum of individuals reside in this economy, and each
decides whether to become a farmer and convert land to agricultural use. These
agents only differ by their outside option θ, which is their individual-specific oppor-
tunity cost of operating a farm. θ ∼ Γ, with pdf γ. The opportunity cost of farming
can be thought of as the wage rate in the non-agricultural sector, which may increase
with the availability of electricity, and so we allow Ω to shift the distribution of out-
side options in the sense of first-order stochastic dominance: Γ(θ; Ω̂) ≤ Γ(θ; Ω̃), for
all Ω̂ > Ω̃. The profit from farming activities is common across farmers and is de-
noted Π, and the set of farmers is therefore Γ(θ), where θ = {θ : θ ≤ Π}.

Each farm is a tract of land of size H, which is fully covered by native vegetation
before farming activities commence. Each farmer can engage in both crop cultivation
and cattle grazing, and the areas allocated to each type of activity are denoted Hc and
Hg, respectively. We assume that the production functions for the two activities are
similar, except that there is a factor other than land which is more useful in crop
cultivation, which we will denote N. Electrification improves the productivity of
N. We think of N as capital, labor, or a combination of both. Our modeling choice
reflects the fact that electrification enhances the productivity of crop cultivation more
than cattle grazing. We assume the following forms for the production functions for
crops and cattle grazing: C = ΩNF(Hc) and G = F(Hg), with FH > 0, FHH < 0 and
FH(0) = ∞.5

Land and the factor N can be bought in the market at prices p and r, respectively.
Farmers are credit constrained and need to fund their expenditures with capital and
land from their own resources, M. We normalize the prices of C and G to 1. Thus,

5The factor Ω only entering the production function for crop but not cattle is merely a model-
ing simplification. The results we derive only require that electrification benefits crop cultivation
relatively more.
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each farmer’s problem can be written as:

max
N,Hc,Hg

Π = ΩNF(Hc) + F(Hg)− rN − p(Hc + Hg) (1)

subject to

rN + p(Hc + Hg) ≤ M, (2)

Hc + Hg ≤ H. (3)

We focus on the case where the resource constraint (eq. 2) is binding, because the
majority of farmers in Brazil are small and medium holders who face some factor
market constraints in capital, credit or labor which affects their ability to generate
N. Land will therefore not be the limiting factor, and the land constraint (eq. 3) will
typically not bind. This focus reflects reality (farming in Brazil expanded into fron-
tier lands that just needed to be cleared and occupied during our period of study),
and also makes the model interesting and informative. The credit constraint always
binds because the profit function is linear with respect to N and FH(0) = ∞.

In the Appendix, we show that the optimal land use and production choices for
farmers, H∗c (Ω), H∗g(Ω), N∗(Ω), display the following properties:

∂N∗

∂Ω
> 0 (4)

∂H∗c
∂Ω
≥ 0 (5)

∂H∗g
∂Ω

< 0 (6)

∂(H∗c + H∗g)
∂Ω

< 0 (7)

The intuition behind equations (4)–(7) is straightforward. Since factor N and land
allocated to crop cultivation become more productive with electrification, N and Hc

move in the same direction as Ω in this model, as shown in equations (4) and (5).
However, since the credit constraint binds, the farmer can only increase land allo-
cated to crop cultivation and/or hire more N in response to an increase in electrifi-
cation if she decreases land allocated to cattle grazing (equation 6). The total land
demand for agricultural purposes within the farm, H∗c + H∗g , decreases in response
to increases in electrification (equation 7): as farmers switch away from cattle graz-
ing and into crop cultivation, they also spend more money on K and hence must give
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up more of Hg than they can increase Hc.6

The net effect of electrification on deforestation depends not only on intensive-margin
changes in land demand within each farm, but also on how the productivity shock
induces extensive-margin changes in the decision to enter the agricultural sector. To
analyze this net effect, we define the total area of native vegetation as the difference
between the economy’s total land endowment and farmer’s total land demand for
agricultural purposes:

Hv = H −
∫ θ

−∞
(H∗c + H∗g)dΓ(θ) (8)

The derivative of the total area of native vegetation with respect to electrification has
two effects:

dHv

dΩ
= −

d(H∗c + H∗g)
dΩ

Γ(θ)︸ ︷︷ ︸
>0

− (H∗c + H∗g)Γ(θ)
dθ

dΩ︸ ︷︷ ︸
≶0

(9)

The first term relates to the intensive-margin adjustment, through which electrifica-
tion reduces the land demand for each farmer by inducing farmers to shift away from
land-intensive cattle grazing activities. The second term is the extensive-margin ef-
fect: a positive productivity shock associated with electrification changes the thresh-
old in the distribution of farming opportunity costs below which individuals decide
to farm. Whether this threshold increases or decreases with electrification depends
on the relative magnitudes of the changes in farming profits and in non-agricultural
wages. If electrification increases farm profits more than the it increases farmers’
outside option, the extensive-margin adjustment would lead to some deforestation
as native vegetation is cleared for new farms. In this case, the overall effect on na-
tive vegetation is ambiguous. Otherwise, farmers’ will leave their land, allowing
native vegetation to regrow over time, and the net effect on deforestation should
be unambiguously negative. The net effect on the forest is therefore theoretically
ambiguous; it will depend on the relative magnitudes of the two opposing effects,
including the mass of citizens who are on the margin of participation in agriculture.
We will examine each of the two (intensive and extensive margin) effects in the data,
and also compare the relative magnitudes of these estimated effects to infer the net
implication of the productivity shock for deforestation.

6In reality, the price of cropland is higher than the price of pastureland, so this effect must be even
stronger. However, we do not assume different land prices for each activity precisely to highlight this
effect.
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To sum up, the mechanism highlighted in this model makes a few assumptions about
the agricultural production function that we can examine in the data, and yields a
few further testable predictions. First, we make the testable assumption that electri-
fication increases productivity of crop cultivation more so than cattle grazing pro-
ductivity. Second, we assume that farmers face constraints in factor markets. We
will provide evidence that farmers are credit-constrained, although we cannot rule
out that other constraints are at work. Third, the model predicts that electrification
should lead to greater investments in capital, specifically in capital that raises crop
farming productivity. Fourth, the model predicts that positive productive shocks
induce farmers to shift land use from land-intensive cattle grazing to N-intensive
cultivation. Finally, our model highlights that electrification intensive- and exten-
sive margin effects on the demand for agricultural land. On the intensive margin,
it reduces demand for agricultural land through reductions in land demand for cat-
tle grazing; increases in land demand for crop cultivation, if any, are not enough to
offset the reduction in land demand for cattle grazing. On the extensive margin, it
may or may not increase land demand – hence, farmland – depending on its relative
magnitude in farms’ profits and farmers’ outside option. Hence, the overall effect on
demand for agricultural land is ambiguous.
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4 Data

We combine three datasets in order to study the impact of the vast expansion of the
electricity network across Brazil from 1960-2000 on agricultural productivity, agri-
cultural investments, and deforestation. First, we use county-level data from the
Brazilian Census of Agriculture in order to track amount of land under cultivation,
agricultural inputs, and total harvests. Second, we use data assembled by Lipscomb
et al. (2013) for measures of electricity infrastructure in each decade and an instru-
mental variable which provides the exogenous variation in electricity access. Finally,
we use rainfall data compiled by Matsuura and Willmott (2012). Table 1 presents
summary statistics from these datasets.

4.1 Census of Agriculture

Definition of a rural establishment and level of aggregation The Brazilian Cen-
sus of Agriculture is a comprehensive and detailed source of data on the universe of
rural establishments in the country. The definition of a rural establishment is con-
stant across the waves we use, and is similar to what would be commonly thought
of as a farm: a continuous plot of land under a single operator, with some rural
economic activity – crop, vegetable or flower farming, orchards, animal grazing or
forestry. There are no restrictions on the size of the plot, tenure, or market partici-
pation. Common lands are excluded from this definition, as are domestic backyards
and gardens. Throughout the paper, we refer to a rural establishment simply as a
farm. We use county-level data from the following 5 waves of the Census of Agri-
culture: 1970, 1975, 1985, 1996 and 2006.7 During this period, there were signifi-
cant changes in the borders and number of Brazilian municipalities. We follow the
methodology of Reis et al (2010), who construct minimum comparable geographical
areas that are constant over this period, allowing for meaningful comparison across
years. We loosely refer to these areas as counties.

Outcome variables: Area Three sets of outcome variables are central to our anal-
ysis. First is the farm area in each of three land use categories: cropland, pastures,
and native vegetation. Together, these three land use categories account for between

7This selection was made so as to match the other available sources of data. The first wave of
the Census of Agriculture was carried in 1920. From 1940 to 1970 the Census of Agriculture was
decennial. From 1970 to 1985 it was carried in 5-year intervals. The last two waves were carried in
1996 and 2006.
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81% and 90% of the total land in farms in Brazil during the period 1970-2006. The re-
maining farm area is bundled in a fourth “other” category, which includes orchards,
planted forests, buildings and facilities, water bodies and non-arable land.8 Crop-
land excludes area for perennial crops (many of which are in orchards) and includes
forage-land. Pastures can be either natural or planted.

Outcome variables: Productivity Second, we construct measures to capture farm
productivity as well as the productivity of crop farming and cattle grazing sepa-
rately. We measure farm productivity by their gross production value divided by
total farm area (production per hectare). Gross production value is the the market
value of all goods produced in farms, including production for own consumption.
Crop farming productivity is measured in an analogous way: gross crop production
value of divided by cropland (crop production per hectare). Our main measure of cattle
grazing productivity is the farm inventory of cattle heads divided by hectares of pas-
tureland (heads per hectare). We also breakdown the total cattle herd into beef cattle
and dairy cattle, and measure dairy cattle productivity as milk production per head
of dairy cattle.

Outcome variables: Capital and Inputs A third set of outcome variables is related
to the capital stock, irrigation and input usage in farms. For capital stock, we use
the number of tractor in a country. For irrigation, we have the number of farms that
use irrigation as well as the irrigated area within farms. Finally, we use spending on
fertilizers and pesticides as measures of input usage.

4.2 Electricity Data

The large majority of Brazil’s electricity is based on hydropower. Electricity access
is measured based on archival research of the location and date of construction of
hydropower plants and transmission substations in Brazil from 1950-20009. Reports,
inventories, and maps from Brazil’s major electricity company (Eletrobras) over the
period were collected, and the data was consolidated into information about the sta-
tus of the electricity grid in each decade. Eletrobras made data available on their
power plants, transmission lines (which transport electricity from the power plant

8For our purposes in this paper, we explicitly separate planted forests from native forests. The
area in planted forests is small, and bundling the two categories makes no quantitative difference in
or results.

9This data and the related instrument was also used in Lipscomb et al. (2013).

15



at which they are generated to the region in which the electricity will be used), and
transmission substations (which take electricity from the high voltage transmission
lines and convert the power to voltage levels that can be accepted by distribution
lines and used by companies, farms, and households). The reports include tables
cataloguing the existing electricity network in order to determine where further ex-
pansion was necessary over the next decade.

The electricity network in Brazil developed from a base in the more developed and
wealthy South in the 1950s and 1960s and spread Southeast in the 1960s and 70s and
to the Northeast in the 1970s and 80s. Expansion occurred further westward in the
1980s and 1990s.

As in Lipscomb et al. (2013), we focus on the transmission lines, substations, and gen-
eration plants as these are the highest cost components of the infrastructure network
and the components most dependent on geographic costs. Distribution networks are
very closely linked with areas where demand for electricity is highest. We merged
these datasets, creating a mapping of the location of power plants and transmission
substations in each decade from 1960 through 2000.

The measure of access to electricity infrastructure is generated as follows: Brazil is
divided into 33,342 evenly spaced grid points. All grid points within a 50 kilometer
radius of the centroid of a county containing a power plant or transmission substa-
tion are assumed to have access to electricity –it is estimated that on average the
distribution networks stretch one-hundred kilometers across. The grid points are
then aggregated to the county level, and the electricity access variable is defined as
the proportion of grid points assigned as electrified in a county.

We match census and agricultural census data to electricity data with a time lag
between the two since the development of a distribution grid around transmission
stations takes several years. We match the 1970 Census data to the electricity data
for the 1960s; the 1975 Census data to the 1970s electricity data; the 1985 Census data
to the 1980s electricity data; the 1995 Census data to the 1990s electricity data; and
2006 Census data to the 2000s electricity data. This gives distribution networks and
farms a short period of time to react to new electricity access so that we observe the
changes resulting from expansion in infrastructure.

Because Brazil’s electricity is based primarily on hydropower, geographic factors
play a major role in the expansion of the network. We develop an instrumental vari-
able for electricity infrastructure based on a prediction of lowest cost areas for expan-
sion in each decade in Lipscomb et al. (2013). This instrument is further explained in
section 5.1; it is based on using geographic variation to predict the lowest cost expan-
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sion path for the electricity network over time. The instrument is developed using
on geographic data collected from the USGS Hydro1k dataset. The Hydro1k dataset
is a hydrographically accurate digital elevation map developed from satellite photos
of the earth. Using ARCGIS, we then calculate the geographic variables most use-
ful for predicting the cost of building a hydropower plant: maximum and average
slope and flow accumulation in the rivers near each of the 33,342 grid points. This
data is then matched to each of the 33,342 evenly spaced gridpoints for use in the
model, and then predicted access is aggregated to the level of the 2,184 standardized
counties across Brazil.

4.3 Climate Data

Finally, we use the rainfall data compiled by Matsuura and Willmott (2012) to con-
struct various indicators of drought, dryness and rainfall volatility for each county.
This dataset provides monthly precipitation estimates at each node of a 0.5 × 0.5
degree grid. These estimates are obtained by interpolating data from local weather
stations.

To construct indicators of drought, dryness and rainfall volatility, we start by iden-
tifying all grid nodes inside each county. If there are less than four nodes with pre-
cipitation data inside the county, we then find the four closest nodes to the county’s
borders. For each county, we then take an weighted average of this set nodes, using
the inverse of the distance to county’s centroid as weights.

We define rainfall volatility of county c as the standard deviation of the residuals of
the following regression:

rcmy = β0 + θm + δy + εcmy,

where rcmy is rainfall in county c, in month m and year y, θm is a month fixed effect
and δy is a year fixed-effect. In words, we calculate rainfall volatility over and above
seasonality and common shocks. We then define high (low) volatility counties as
those whose volatility index is above (below) the median.10

10We calculate other volatility measures, as well as indexes of droughts and dryness. We are still
working on results using those other measures, and future versions of this paper should include such
results either on its body or in the appendix.
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5 Estimation Strategy

In order to identify the impact of access to electricity on deforestation and farm pro-
ductivity, we use variation in electrification from 1960-2000 and data from the agri-
cultural census on farm productivity and data on deforestation over that period.
The principal identification concern in estimating the effect of access to electricity
on farm productivity is that demand variables that attract the government to install
new electricity infrastructure in some counties will also be related to farm produc-
tivity and deforestation. For example, quickly growing nearby cities may increase
the demand for electricity, pushing the government to increase the power network
in the area, but it could also increase the demand for agricultural products and in-
crease the level of capital investments in agriculture because of high local demand.
This would create an omitted variable bias, and we therefore need an instrumental
variable which includes only variation exogenous to farm productivity and defor-
estation.

5.1 Predicting Electricity Expansion Based on Geographic Costs:

the design of the Instrument

Our instrument takes advantage of the fact that hydropower accounts for the ma-
jority of electricity generation in Brazil. The power potential of a hydropower plant
depends on the distance that the water has to fall from the top to the bottom of
the turbine and the amount of water available. Hydropower plants require a steep
slope and a large amount of water flow in order to create pressure from the water
descending through the turbines. Areas which already have a large natural slope
and a significant amount of water flow can have hydropower turbines installed rel-
atively inexpensively, while areas in which the natural geography is less suited to
hydropower generation must have large dams and huge flooded areas in order to
create enough of a distance for the water to fall that power can be generated. Cre-
ating the conditions for the generation of hydropower in areas not naturally suited
to it imposes costs both from the construction of the dam and from the flooding of
the area. This means that topography is highly influential in determining areas that
receive electricity since extending transmission lines is expensive.

We use predicted electricity availability based on the engineering cost of expanding
the network to instrument for electrification. We calculate predicted availability at
each grid point in each decade based on minimization of construction cost for new
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plants and transmission lines at the level of the national budget for new power plants
using only geographic characteristics. The instrument is generated using the in-
formation considered by engineers when choosing locations for hydropower plants
while omitting any demand side information which they might consider. We use the
flow accumulation of water and the maximum and average slope in rivers on a grid
of points across Brazil to predict low cost areas for the generation of electricity. The
model varies over time since new power plants are built first in the lowest cost areas,
and later in areas slightly less attractive from an engineering standpoint in order to
expand the grid outward. Therefore, we identify first where the most attractive areas
are for the generation of hydropower, and allow the network to expand to succes-
sively higher cost areas as Brazil invests further in its electricity grid from decade to
decade.

We use the national budget for electricity plants in each decade based on the size
of the expansion of the actual network in each decade, and predict where these are
likely to be placed given where electricity plants and transmission networks have
been placed in past decades. In the construction of the instrument, we use only
topographic characteristics of the land (flow accumulation and slope in rivers) to
estimate likely locations for new electricity access. This instrument is also used in
Lipscomb et al. (2013). That paper demonstrates that electricity expansion had large
impacts on both the Human Development Index and housing values by county.

As described in Lipscomb et al. (2013), there are three key steps to the creation of our
instrument: first we calculate the budget for plants in each time period based on the
actual construction of major dams in each decade across Brazil. Second, we generate
a cost variable that ranks potential locations by geographic suitability. We base our
suitability predictions on geographic factors of areas where hydropower plants were
actually built. Finally, following the prediction on estimated construction site for
each dam, we generate an estimated transmission network flowing from the new
plants.

The budget of electricity plants is generated based on the actual construction of ma-
jor electricity plants in Brazil over the period. This allows us to model greater ex-
pansion of electricity in years in which the national government decided to expand
production of electricity, and reduced expansion in years in which the government
budgeted for fewer new plants.

In order to rank the suitability of the different sites, we generate hydrographic vari-
ables using the USGS Hydro1k dataset. We generate weights for hydrographic vari-
ables using the actual placement of hydropower plants in Brazil (for robustness we
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have compared these weights to those generated using US hydropower plants, and
we arrive at similar results). The cost parameters are derived using probit regres-
sions in which the dependent variable is an indicator for whether a location has a
dam built on it at the end of the sample period (2000), and the explanatory variables
are the topographic measures. Steep gradients and high water availability are key
factors reducing dam costs.

The Matlab model then begins by placing the new budgeted hydropower plants
for the decade at grid points with the predicted lowest cost from among those grid
points that are not already predicted to have electricity. The model then predicts
transmission lines flowing out from each plant. All plants are assumed to have the
same generation capacity, as we make no assumption on demand in various areas,
so we make the simplifying assumption that each plant has two transmission sub-
stations attached to it. We minimize the cost of the transmission lines based on land
slope and length. We then assume that all grid points within 50km of a predicted
plant or predicted transmission substation are covered by distribution networks.

In later decades, we take the existing predicted network as given and estimate ad-
ditional plants and transmission lines as locating in the next lowest cost areas. We
then estimate the coverage of electricity access in a county by estimating average
coverage of grid points with predicted electricity across the county.

The key potential identification concern related to this instrumental variables esti-
mation strategy would be if the geographic costs for expanding electricity access
also affected the productivity of agriculture or the attractiveness of deforesting new
areas. While variables like water access and slope could affect agricultural produc-
tivity in a cross-sectional framework, our identifying variation results from variation
in whether the cost parameter of a gridpoint is low enough to make it among the
low cost budgeted points in a given decade. This generates a non-linearity in chosen
gridpoints across decades and is different from a simple ranking of lowest to high-
est cost gridpoints. Our identification is therefore based on discrete jumps between
thresholds of suitability for electricity access between decades. The time variation in
our instrument allows us to use fixed effects to separately control for factors directly
impacting the suitability of land for agriculture so that our estimates are the direct
impact of electricity on agricultural productivity.
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5.2 Estimation Strategy

We estimate the effect of electrification on the productivity of rural establishments
over the period 1960 to 2000 using county-level data. We are interested in running
regressions of the form:

Yct = αc + γt + βEc,t + εct, (10)

where Yct is the outcome of interest in county c at time t, αc is a county fixed-effect,
γt is a time fixed-effect, and Ec,t is the proportion of grid points in county c that are
electrified in period t – that is, Ec,t is our measure of actual electricity infrastructure.

The main concern with (10) is that, even controlling for time and year fixed-effects,
the evolution of electricity infrastructure is likely to be endogenous to a various fac-
tors also affecting the evolution of farm productivity. This causes OLS estimates to
be biased.

We therefore use an instrumental variable (IV) approach, making use of the instru-
ment described in Section 5.1. Specifically, we use a 2SLS model where the first stage
is:

Ect = α1
c + γ2

t + θZc,t + ηct, (11)

where Zct is the fraction of grid points in county c predicted to be electrified by
the forecasting model (relying only on the exogenous variation from the geographic
cost variables changing according to the budgeted amount of infrastructure in each
decade) at time t. The second stage is:

Yct = α2
c + γ2

t + βÊc,t + ε2
ct, (12)

where Êc,t is obtained from the first stage regression (11). Note that both Zc,t and Ec,t

are constructed by aggregating grid points within the county. Since the number of
grid points vary in each county, we weight regressions using county area as weights.
In all specifications, we cluster standard errors at the county level in order to avoid
under-estimating standard errors as a result of serial correlation in electrification.

Our IV strategy corrects for the bias introduced by the endogenous placement of
electricity infrastructure by isolating the impact of determinants of the electricity
grid evolution unrelated to farm productivity. We present a variety of robustness
checks in table 4, demonstrating that our estimates do not vary with the addition of
geographic trends and other controls.
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6 Empirical Results

6.1 First-stage results

Table 2 shows the first-stage results of our main analysis. As explained in section 4,
our instrument is based on a engineering model that takes various inputs. Columns
(1)-(3) show different specifications controlling directly for some of these inputs. In
addition to county fixed-effects, which are included in all specifications in Table 2,
Column (1) uses year-fixed effects. The modeled electricity availability is highly cor-
related with actual electricity infrastructure, and this correlation is significant at the
1 percent level. Column (2) adds Amazon-specific year dummies to flexibly control
for the region’s time trend, which has significantly differed from that of the rest of
the country. The point estimates decreases from from 0.275 to 0.181, but remains sig-
nificant at the 1 percent level. Column (3) adds interactions of our water flow and
river gradient measures with year dummies. The changes in the point estimate and
standard error are negligible and, for the rest of the paper, we maintain the spec-
ification of Column (2) as our preferred specification. In Columns (4) and (5), we
check that both our modeled instrument and measure of electricity infrastructure
are indeed correlated with actual electricity provision as captured by the Census of
Agriculture. The correlations are strongly significant and have similar magnitudes
on the mean as those of Column (2).

6.2 The effects of electricity on agricultural productivity

Based on the discussion in section 2 and the model presented in section 3, we inter-
pret the arrival of electricity as a positive productivity shock to agriculture and in
particular to crop cultivation. The results presented below support our interpreta-
tion that the arrival of electricity can be thought of as a productivity shock to crop
cultivation, but not to cattle grazing.

Table 3 reports the main effects of increasing electricity infrastructure on agricul-
tural productivity. Columns (1)-(3) show respectively the OLS, reduced form and
IV estimates when the dependent variable is the log of agriculture production value
per hectare of farmland. The IV estimates are larger than the OLS estimates and
imply that that a 10 percent increase in electricity availability increases agricultural
productivity by 18.6 percent, and this result is significant at the 5 percent level. To
further understand which activity benefits relatively more from new electricity in-
frastructure, we analyze separately the effects on crop and cattle grazing produc-
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tivity. Columns (4)-(6) show results when the dependent variable is the log of crop
production value per hectare of cropland. The IV point estimate implies that a 10
percentage-point increase in electricity infrastructure increases crop productivity by
19.6 percent, and this effect is significant at the 1 percent level. The high impact of
electricity on crop productivity is mirrored by a low impact on cattle grazing produc-
tivity. Columns (7)-(9) show the effects of electricity on the number of cattle heads
per hectare of pastureland, or heads per hectare. The IV estimate in column (9) implies
that a 10 percentage-point increase in electricity leads to a 0.05 increase in heads per
hectare, a 4.4 percent effect on the mean. Not only this is a lower impact than that
for crop cultivation, it is not statistically significant at conventional levels.

In sum, the arrival of electricity infrastructure in a county significantly increases
crop productivity, but not cattle grazing productivity. Section 6.5 below gives further
evidence that the effect of electricity on livestock productivity is overall small. This
result corroborates our model’s assumption that electricity is a positive productivity
shock to crop cultivation productivity.

6.2.1 Identification concerns

As explained in section 4, the instrument uses cross-sectional variation from geo-
graphical factors, and time-series variation from the national budget for construction
of electricity infrastructure and suitability ranks that introduce discontinuities on the
order in which new infrastructure is built. Including county fixed-effects isolates any
pure cross-section variation. To further mitigate concerns that our instrument uses
invalid variation for dealing of the endogeneity problems of grid placement, Table 4
presents results of a series of sensitivity tests where we use all possible combinations
of our instrument’s components as explicit controls in the second-stage regressions,
on top of county fixed-effects and decade dummies. Each row of Table 4 reports a
different specification of a 2SLS regression where the dependent variable is the log
of crop production value per hectare in column (1), or the number of cattle heads
per hectare of pastureland in column (2). We also report the corresponding first-
stage statistics in column (3). As can be seen, both the main result of Table 3 – that
electricity affects crop cultivation productivity, but not cattle grazing productivity –
survives all the different specifications.
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6.3 Changes in Land Use and Production Decisions

Given that electricity increases overall agricultural productivity, it is natural to ex-
pect that it will lead to an expansion of farmland, as producers’ will want to do more
agriculture. But the arrival of electricity also changes the relative productivities of
crop cultivation and cattle grazing, which implies that producers should shift away
from cattle grazing into crop cultivation. In this section we explore in more details
these changes in producers’ decisions.

Table 5 shows the effects of electrification on land allocation within farms. Columns
(1) and (2) show how farmland expands following more electricity infrastructure.
The IV estimate implies that the share of farmland in the typical county increases
by 1.1 percentage points following a 10 percentage point increase in electricity in-
frastructure. This coefficient however is not precisely estimated and hence is not
statistically significant. In the remaining columns we look at changes in the shares
of pastureland, cropland and area in native vegetation within farms. In Columns (3)
and (4), we see that the share of pastureland in the county’s farmland decreases with
electricity infrastructure. The IV estimate in column (4) implies that the share of pas-
tures in farmland decrease by 4.8 percentage points following a 10 percentage point
increase in electricity, an effect of 10 percent for the typical county. Columns (5) and
(6) show the same analysis for cropland. The IV estimate in column (6) implies that
the share of cropland increases by 0.14 percentage points, a small and not statistically
significant effect. Finally, in columns (7) and (8) we look at the share of farmland that
remains in native vegetation. The IV estimate implies that a 10 percentage-point in-
crease in electrification induces producers to increase native vegetation within rural
establishments by 4.4 percentage points, a mean effect of 29 percent.

These results suggest that the arrival of electricity induce producers to reduce the
share of land they allocate to pastures relative to cropland. This is not surprising
once we noted that electricity increases crop farming productivity relative to cattle
grazing productivity. What is more surprising is the large effect of electricity on
the share of native vegetation within farms. Such large effect raises two questions.
First, abstracting from potential private productive benefits of keeping native veg-
etation,11 why would producers ever choose to keep land in native vegetation? In
our model of land use choice, producers face constraints on input factors other than
land – say, capital and/or labor. Following a positive productive shock to crop farm-
ing, producers cannot increase their crop production while keeping cattle grazing

11Native vegetation provides ecosystem services by increasing biodiversity and helping with pol-
lination, plague control, providing wood fuel, increasing soil moisture and protecting water bodies.
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constant. Since crop farming is less land-intensive than cattle grazing, the reduction
in land demand for cattle grazing must be larger than the increase in land demand
for crop farming. This intensification effect frees-up land, which then goes back into
native vegetation.

Second, what is the effect of electricity in overall native vegetation, not only within
farmland? Table 5 reveals two opposing effects. On one hand, new electricity infras-
tructure induces an expansion of farmland, which potentially has negative effects on
native vegetation outside farms. On the other hand, there is a direct positive effect
on native vegetation inside farms. To calculate the net effect, we would ideally have
data on native vegetation outside farms. To the best of our knowledge there are no
countrywide reliable sources for most of our period of analysis.12 We therefore need
to make assumptions on what was the state of native vegetation outside farms prior
to the arrival of electricity. Assuming that all non-farmland is covered (not covered)
with native vegetation yields the lower (upper) bound of 0.22 (0.35). That is, a 10
percentage point increase in electricity infrastructure increases the share of native
vegetation in the typical county by 2.2 – 3.5 percentage points. See the appendix for
details on how to calculate this estimate from the numbers presented in Table 5.

Long-run results One may wonder if the increase in native vegetation within farms
concomitantly with the expansion of farmland is not an indication of a first step to-
wards cutting down trees in the long run. To investigate the impact of electrification
in land use choices, we forward-lag the dependent variable by one decade.13 Ap-
pendix Table 6 show the results, which remain largely unchanged, suggesting that
these are not just short-run effects.

Crop choices Although the ratio of cropland to pastureland increases with elec-
trification, the absolute share of cropland does not seem to increase. To understand
why, we look into the composition of different crops choices; one possibility for crop-
land not to expand despite the productivity increase in crop farming is changes in
the crop mix. If farmers substitute less productive crops for more productive ones,
overall cropland may remain stable.14 Specifically, we investigate the effects of elec-

12By design, the Census of Agriculture collects farmland data. Good countrywide remote sensing
data is available starting in late 1990’s and early 2000’s.

13As described in section 4, the outcome variables from the Census of Agriculture are already
lagged, to allow for the impacts of electricity to kick in.

14Whereas out stylized model contemplated only two activities – labeled cattle grazing and crop
farming – it could be easily extended to incorporate more activities, for instance, different crop
choices.
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trification separately on grains and cassava. Grains – which include soybeans, maize,
cotton and rice – are the high-productive, capital-intensive cash crops that Brazilian
farmers grow. In contrast, cassava is a subsistence cop, with low yields and relatively
more land-intensive than grains.

Table 7 reports the results. The IV estimate in column (2) implies that grain pro-
duction increases by 41 percent following a 10 percentage point increase in electric-
ity infrastructure, and this estimate is significant at the 1 percent level. In contrast,
the IV estimate for cassava is not statistically significant and in any case is smaller
in magnitude. Looking at the land allocated to each of the crops, the IV estimates
again imply that farmers allocate more land into grains: the IV estimates in columns
(4) and (6) show that farmers allocate more land to grains and less land to cassava
following arrival of electricity infrastructure. These xhanges in the crop mix help
explaining why we see little or no effect of electrification on cropland despite the
increased crop productivity.

6.4 Testing mechanisms and other model predictions

We now empirically evaluate our model’s predictions to build confidence that it can
explain the mechanisms underlying our results. First, in our model there are two
opposing forces following a productivity shock to agriculture productivity – an in-
tensification and one expansion effects. We argue that these opposing effects come
from different groups of producers, as it would be inconsistent for one single group
of producers to display both forces. The mechanism we outline is one where new, in-
coming operators open new farms (or, equivalently, fewer operators leave). In Table
8, columns (1)-(2) show a large effect on the number of farms above 10 hectares in
a county. We exclude very small farms from the dependent variable for conceptual
reasons.15 Our model’s prediction is about new operators attracted by an increase in
productivity. While our model’s prediction is silent on farm size, very small farms
are typically operated by families for subsistence, and therefore do not fit into our
model.

Second, we test one important link between electricity and agricultural productivity
– irrigation. One of our model’s implications is that producers respond to an increase
in the availability of electricity by making crop-related investments. Irrigation is a

15While farms of 10 hectares may be considered large for some countries, like Bangladesh or India,
they are considered small in Brazil where the average farm size ranged from 60 to 73 hectares in our
sample period. For example, land redistribution programs grant no less than 5 hectares for a family
to produce at subsistence levels. Depending on the county, the estimated minimum size of plot of
land for subsistence may be as large as 100 hectares.

26



strong candidate, as explained in section 2. Columns (3) and (4) show that both the
number of farms as well as irrigated farm area grow substantially with an increase in
electricity infrastructure. A 10 percentage point increase increase in electricity leads
to 27 percent more farms with irrigation and a 70 percent increase in irrigated land.

Next, Table 8 presents the effects of electrification usage of inputs. In the IV specifica-
tion, a 10 percent increase in electrification leads to a 53 percent in crease in fertilizer
spending (Column (2)), and a 28.7 percent increase in pesticides (Column (4)), and
both effects are significant at the 1 percent level. Electrification also leads to more
tractors being used, as shown in columns (5) and (6).

6.5 Further evidence that cattle grazing productivity does not in-

crease with electricity

Is it really the case that the arrival of electricity does not increase productivity in
cattle-related activities, as found in section 6.2?16 To further explore this question,
Table 9 looks at the effect of electricity on alternative productivity measures of cattle-
related activities. In columns (1) and (2), the dependent variable is the fraction of the
herd that is younger than one year-old, a proxy for cattle turnover. The idea is that
there can be productivity gains by increasing cattle turnover, which translates in a
younger the heard. The IV coefficient in column (2) implies that a 10 percent in-
crease in electricity infrastructure increases the fraction of calves by 0.48 percentage
points, a 2.5 percent effect on the mean. The effect is significant at the 10 percent
level. In the same vein, columns (3) and (4) look at the effect on fraction of the herd
that is younger than two years old. The IV coefficient is not statistically significant,
and represents an effect of 1.5 percent on the mean. Overall these effects are small
in magnitude and weakly significant when compared to the effects found on crop
productivity.

Electricity can have an important effect on dairy activities by allowing for mechan-
ical milking and refrigeration. To explore this possibility, columns (5) and (6) look
at dairy cattle productivity as measured by milk per dairy call. The IV estimate in
column (6) implies that a 10 percent increase in electricity increases milk produc-
tion by 60 litters per dairy cow, a 6 percent effect on the mean. Is this effect strong

16Ideally one would measure cattle grazing productivity as kilos-per hectare/year, since ultimately
it is not the number of heads of cattle that matter, but their weight. And, by reaching a given weight
using the same amount of land in a smaller period of time would increase productivity. Unfortu-
nately, to the best of our knowledge this measure is not available from any data sources, and heads
per hectare is the best measure we can use.
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enough to induce producers to change their herd’s composition towards dairy cat-
tle? In columns (7) and (8) we answer this question by looking at the fraction of dairy
cattle on the herd. The IV coefficient is not significant and represents an small effect
on the mean. Taken together, the results from columns (5)-(8) imply that the effect
on dairy cattle productivity, while sizable, is not sufficient to induce producers to
change their herd’s composition, having therefore little effect on the aggregate cattle
grazing productivity.

Finally, columns (9) and (10) look at the ratio of animal production to total produc-
tion (i.e., crop production plus animal production). The idea is that there can be
other livestock activity other than cattle grazing, or other ways to measure cattle
grazing production not captured previously. The IV estimates indicate that electric-
ity benefits animal production less than it benefits crop production: following an a 10
percent increase in electricity infrastructure, the share of animal production declines
4.3 percentage points, a 13.7 percent effect on the mean, and strongly significant.
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7 Discussion on alternative mechanisms

Our stylized model in section 3 offers an explanation for the empirically observed
links between electricity, agricultural productivity and deforestation. There are alter-
native mechanisms that could explain the empirical regularities that we document,
and we now turn to a discussion of those.

Demand for Forest products One alternative explanation for the positive link be-
tween electricity and forests, is through a rise in demand for forestry products in-
duced by an increase in income.17 Foster and Rosenzweig (2003) argue that such
demand mechanism was central to explain the positive association between income
and forest in India, as well as in a panel of countries. One important condition for
this mechanism to be captured empirically is that local demand for forestry products
must be met by local supply. Thus, in their panel of countries Foster and Rosenzweig
(2003) find that a positive association between income and forest growth for closed
economies – Brazil included – but not for open economies. We therefore ask the
question: did the shift in land use toward forests come from increases in demand for
forest products?

We answer this question in Table 10. In columns (1) and (2) the dependent variable is
the log of the total value of forestry goods produced. Both the OLS and IV estimates
are negative, and the IV estimate is not statistically significant, indicating that pro-
duction of forestry products does not increase with electricity, despite the increase
in native vegetation documented in Table 5. Forestry goods however are very het-
erogeneous, ranging from wild fruits to timber. In columns (3) and (4) we focus on
the production of wood-related products – fuelwood, charcoal and timber. The IV
estimate is now positive, but not statistically significant. In columns (5) and (6) we
ask whether producers make a more intensive use of the forests in their property —
a natural thing to do when faced with rising demand for forestry products – and use
the log of the production value of forestry produces per hectare of forest area. The
negative OLS and IV estimates suggest that the rise in forest area within farmland
outpaces their direct economic exploration. Finally, we ask whether producers ac-
tively plant more forests, presumably to meet demand for products that cannot be
produced with native species, and use the share of planted forests in farmland as the
dependent variable in columns (7) and (8). Both the OLS and IV estimates are small
in magnitude and non-significant. To sum up, we find no evidence that the demand

17(Lipscomb et al., 2013) find positive links between electricity and income.
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channel to be driving the growth of native vegetation in Brazil for the period we
analyze.

Substitution of fuelwood for electricity An argument that runs in the opposite di-
rection of Foster and Rosensweig’s is that electricity may have induced households
and firms to switch away from wood-based fuels, reducing the pace of wood extrac-
tion and hence deforestation. This could result in a positive link between electricity
and native vegetation in the data. We argue that this alternative mechanism is un-
likely to have played a relevant role, at least locally, for three reasons.

First, electricity did not replace wood-based fuels in the residential sector, which
accounted for 70 percent of the firewood consumption in 1970. Whereas household
consumption of wood-based energy reduced by 50 percent between 1970 and 2006,
this reduction was due to the dissemination of bottled liquefied petroleum gas—a
fossil fuel obtained from petroleum or natural gas with little or no use of electricity—
, which gradually replaced firewood as a cooking fuel. Whereas we cannot formally
test this due to data limitations, aggregate data make this point clear: In 1970, 49
percent of households used firewood, and 43 percent used bottled LPG for cooking,
according to Census data. By 1991 (the last Census to inquire about cooking fuel), 71
percent of households used bottled LPG, and 13 percent used only firewood, with a
further 14 percent using both bottled LPG and firewood. Electric stoves on the other
hand have never been adopted in Brazil. In 1970, only 0.08 percent of households
declared using electricity for cooking according to Census data, whereas in 1991
respondents did not even have the option to choose “electricity”, which would be
under the “other” category, chosen again by 0.08 percent of the households.

Second, there is no evidence that either farms or industrial plants, which together
accounted for the remainder 30 percent of firewood consumption in 1970, directly
replaced wood-based energy for electricity. During the period we analyze, indus-
trial plants actually increased their consumption of wood-based energy, while farms
decreased it. The agricultural census data allows us to check whether farms substi-
tuted firewood for electricity. The results are in Table XXXX.

Finally, firewood has virtually never been used to generate electricity directly in
Brazil. During the period we study, at most 0.75 percent of the energy content of fire-
wood was used to generate electricity (BRASIL, 2007). Thermal generation in Brazil
has typically used fossil fuels. Therefore, the hydropower-based electric grid expan-
sion in Brazil did not directly replace firewood for electricity generation. While in
a counterfactual scenario without electricity expansion it is possible that aggregate
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firewood consumption would have increased, there is no evidence that electricity
replaced firewood locally, because this is the variation we use to identify the link
between electricity and deforestation.

Better enforcement of property rights Arguably, property rights may be locally
better enforced with the arrival of electricity — for example, counties with electricity
may have more and better courts and policing, protecting landowners from each
other and from invasions. Better “contracting institutions” (Acemoglu and Johnson,
2005) may have enabled producers to invest in more productive technologies and
crop choices (Hornbeck, 2010), thus explaining the intensification of the agricultural
activity that we find.

While the presence of the state may have improved conflict resolution between pri-
vate parties, in Brazil it may also represent a higher risk of expropriation. Starting in
1964, land reform programs explicitly targeted unproductive properties for expropri-
ation and redistribution.18 Historians have noted that the presence of native vegeta-
tion signaled unused land, increasing the probability of expropriation. Landowners
would clear their land and populate it with some cattle to protect against the risk of
expropriation. As a result, the arrival of electricity (and the state) may have induced
a reduction in native vegetation within private properties and increased the share of
(low productivity) pastureland.

The improvements of property rights enforcement accruing from the arrival electric-
ity could therefore have ambiguous effects on deforestation. The fact that these two
forces partially offset each other mitigate

Table 12 suggests that electrification has had ambiguous effects on property rights.
We use two measures to proxy different types of property rights. In columns (1) and
(2), we use the fraction of land under tenancy or shareholder contracts. We believe
this measure captures institutions that protect private parties from each other. The
results show that the fraction of land under tenancy contracts increase significantly
with electricity. We interpret this as evidence that

In columns (3) and (4), we use the fraction of untitled farmland

Functioning land tenancy and shareholder markets are a sign of well established
property rights

18Although expropriations averaged 8 properties per year in the the 1964–1984 period, the threat
existed (Hidalgo et al., 2010). After 1984,
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8 Conclusion

We provide evidence that an increase in agricultural productivity can be good for
forests. We find that rural properties in counties where electricity infrastructure in-
creases experience more growth in native vegetation than farms located in counties
where electricity did not expand. This effect is persistent, and is consistent with an
intensification story whereby producers substitute away from land-intensive cattle
grazing and into crop cultivation. Producers also shift away from other subsistence,
land-intensive crops, such as cassava and increase the area of capital-intensive crops,
such as grains.

We interpret our results as supportive for a more subtle version of the Borlaug Hy-
pothesis. The subtlety comes from the fact that increases in agricultural production
alone are not able to prevent farmland to expand; in our story, frictions in factor
markets — such as credit and (local) labor markets — prevent producers to fully ex-
plore their land, leaving room for native vegetation. In absence of such frictions, it
is likely that farmland expansion would dominate the intensification effect, leading
to more forest loss. Yet, given the widespread presence of frictions in tropical rural
economies,

Our results have important implications for policy making in
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Table 1: Sample Descriptive Statistics

Number of Obs. Mean Std. Dev. Min Max

Electricity variables
Electricity Infrastructure 15,460 0.74 0.41 0.00 1.00
Modeled electricity instrument 15,460 0.69 0.45 0.00 1.00
Fraction of Farms with Electricity 15,460 0.34 0.36 0.00 13.35

Productivity variables
Production Per Hectare (log) 15,458 12.48 1.22 6.94 17.73
Crop Production per Hectare (log) 15,437 6.67 0.89 0.63 11.37
log_vProdCattlePH 15,411 4.86 1.07 -1.25 11.69

Land Use
Fraction of County Area in Farmland 15,460 0.71 0.27 0.00 6.26
Fraction of Farmland in Pastures 15,460 0.47 0.24 0.00 0.99
fFarmCropAnnual 15,460 0.17 0.17 0.00 0.98
fFarmMataNat 15,460 0.16 0.14 0.00 0.99

Cattle stuff
Animal Production/Total Production 15,458 0.39 0.23 0.00 1.00
fraction of cattle less than 1 year old 15,448 0.19 0.05 0.00 0.91
Heads of Cattle per Hectare 15,439 1.13 1.56 0.00 60.87
milk production per dairy cattle 15,295 0.97 0.59 0.02 9.66
fraction of dairy cattle on total herd 15,448 0.14 0.08 0.00 1.36

Capital usage
Fraction of Farms with Irrigation 15,460 0.06 0.11 0.00 0.98
ihs_nTractor 15,460 4.18 2.09 0.00 10.53
ihs_xFertilPH 15,460 2.52 1.99 0.00 10.72
ihs_xPestPH 15,460 1.83 1.62 0.00 11.84

Number of AMCs 3,092
Number of observations 15,460

Notes: Monetary variables measured in thousands of reais in 2002.
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Table 2: First-Stage Results

Dependent Variable Electricity Infrastructure Fractions of
Farms with
Electricity

(1) (2) (3) (4) (5)

Modeled electricity availability 0.265∗∗∗ 0.168∗∗∗ 0.167∗∗∗ 0.0831∗∗

[0.0397] [0.0380] [0.0383] [0.0333]

Electricity Infrastructure 0.106∗∗∗

[0.0187]

Year dummies Yes Yes Yes Yes Yes

Jungle × year dummies No Yes Yes Yes Yes

Water flow × year dummies No No Yes No No

River gradient × year dummies No No Yes No No

Observations 15,510 15,510 15,510 15,496 15,496
Mean dep. var. 0.740 0.740 0.740 0.338 0.338
F-stat 44.7 19.4 18.9 6.2 32.3
p-value 0.000 0.000 0.000 0.013 0.000

Notes: In columns (1)–(3) the dependent variable is prevalence of electricity infrastructure in the county, measured from infras-
tructur inventories. In columns (4)–(5), the dependent variable is the fraction of farms with electricity in the county, measured
from the Censuses of Agriculture. Standard errors clustered at county level in brackets. All specifications include county fixed
effects and use county area weights.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: The Effects of Electricity on Agricultural Productivity

log Production Per Hectare ($) log Crop Production Per
Hectare ($)

Heads Per Hectare

(1) (2) (3) (4) (5) (6) (7) (8) (9)
OLS Reduced

Form
IV OLS Reduced

Form
IV OLS Reduced

Form
IV

Electricity Infrastructure 0.235∗∗ 1.826∗∗ 0.274∗∗∗ 2.084∗∗∗ 0.107 0.327
[0.101] [0.827] [0.0686] [0.568] [0.190] [0.875]

Instrument 0.306∗ 0.349∗∗∗ 0.0546
[0.159] [0.0888] [0.164]

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 15,493 15,493 15,493 15,469 15,469 15,469 15,468 15,468 15,465
Mean dep. var. 9.73 9.73 9.73 3.91 3.91 3.91 1.13 1.13 1.13

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects. The dependent variable in columns (1)-(3) is the log of total farm production value
divided by total farmland. The dependent variable in columns (4)-(6) is the log of total crop production value divided by total cropland. The dependent variable in columns (7)-(9) is the number
of cattle heads per hectare of pastureland.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Sensitivity Analysis by Directly Controlling for Geographic Factors in the
Second Stage

(1) (2) (3) (4)
Specification (description of control set added to
RHS)

log Crop
Produc-
tion Per
Hectare

Heads
Per

Hectare

First
stage

First
stage
F-stat

1. Water flow × decade budget 2.227∗∗∗ -0.691 0.263∗∗∗ 273.0
[0.246] [0.632] [0.0159]

2. River gradient × decade budget 2.227∗∗∗ -0.709 0.260∗∗∗ 270.5
[0.250] [0.640] [0.0158]

3. Amazon dummy × decade budget 2.281∗∗∗ 0.196 0.157∗∗∗ 107.0
[0.422] [1.071] [0.0152]

4. Water flow × decade budget and Amazon
dummy × decade budget

2.273∗∗∗ 0.239 0.155∗∗∗ 104.6
[0.427] [1.084] [0.0152]

5. River gradient × decade budget and Amazon
dummy × decade budget

2.302∗∗∗ 0.287 0.158∗∗∗ 108.8
[0.419] [1.063] [0.0152]

6. River gradient × decade budget and water flow
× decade budget

2.225∗∗∗ -0.695 0.261∗∗∗ 273.2
[0.248] [0.637] [0.0158]

7. River gradient × decade budget, water flow ×
decade budget, and Amazon dummy × decade
budget

2.299∗∗∗ 0.397 0.156∗∗∗ 105.7
[0.425] [1.079] [0.0152]

8. Water flow × year dummies 2.230∗∗∗ -0.694 0.264∗∗∗ 274.3
[0.246] [0.630] [0.0159]

9. Amazon dummy × year dummies 2.084∗∗∗ 0.327 0.167∗∗∗ 125.0
[0.386] [1.009] [0.0149]

10. River gradient × year dummies 2.221∗∗∗ -0.707 0.260∗∗∗ 271.7
[0.248] [0.639] [0.0158]

11. Water flow × year dummies and Amazon
dummy × year dummies

2.079∗∗∗ 0.365 0.165∗∗∗ 123.0
[0.389] [1.016] [0.0149]

12. River gradient × year dummies and Amazon
dummy × year dummies

2.114∗∗∗ 0.399 0.168∗∗∗ 126.8
[0.384] [1.003] [0.0149]

13. Water flow × year dummies and river gradient
× year dummies

2.219∗∗∗ -0.700 0.262∗∗∗ 276.3
[0.246] [0.634] [0.0158]

14. River gradient × year dummies, water flow ×
year dummies, and Amazon dummy × year
dummies

2.115∗∗∗ 0.510 0.166∗∗∗ 123.4
[0.390] [1.016] [0.0149]

15. Quartic suitability rank × year dummies 2.070∗∗∗ -0.0284 0.185∗∗∗ 150.3
[0.347] [0.909] [0.0151]

Notes: Standard errors clustered at county level in brackets. The goal of this Table is to show that the IV results presented in
Table 3 are robust to the inclusion of controls which are used in the construction of the instrument. Each row represents a dif-
ferent sensitivity test. All specifications include county fixed effects. The dependent variable in column (1) is the log of gross
crop production value divided by cropland (the same in columns 4–6 in Table 3). The dependent variable in column (2) is the
number of cattle heads per hectare of pastureland (the same in columns 7–8 in Table 3). Column (3) reports the first-stage coef-
ficient associated with the instrument. Column (4) reports the associated F-statistic. See section 4 and the Appendix for precise
definitions of the control variables included in this table.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: The Effects of Electricity on the Allocation of Land

Farmland
County Area

Pastures
Farmland

Cropland
Farmland

Native Vegetation
Farmland

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Electricity Infrastructure 0.00987 0.288∗∗∗ 0.0223 −0.329∗∗∗ −0.0157 0.0369 0.0236 0.317∗∗∗

[0.0140] [0.110] [0.0191] [0.112] [0.0105] [0.0466] [0.0201] [0.109]

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 15,460 15,460 15,460 15,460 15,460 15,460 15,460 15,460
Mean dep. var. 0.71 0.71 0.47 0.47 0.17 0.17 0.16 0.16

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects. The dependent variable in columns (1)-(2) is the county’s farm area divided by the
county’s total area. The dependent variable in columns (3)-(4) is the county’s area in pastures divided by the county’s farm area. The dependent variable in columns (5)-(6) is the county’s area in
crops divided by the county’s farm area. The dependent variable in columns (7)-(8) is the county’s area in pastures divided by the county’s farm area
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: The Effects of Electricity on the Allocation of Land: Long Run

Farmland
County Area

Pastures
Farmland

Cropland
Farmland

Native Vegetation
Farmland

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Electricity Infrastructure −0.0189 0.0948 −0.00580 −0.430∗∗∗ −0.0110 0.0744 0.0543∗∗∗ 0.331∗∗∗

[0.0136] [0.107] [0.0195] [0.117] [0.0116] [0.0474] [0.0206] [0.126]

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 12,368 12,368 12,368 12,368 12,368 12,368 12,368 12,368
Mean dep. var. 0.71 0.71 0.47 0.47 0.17 0.17 0.16 0.16

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects. This table is similar to Table 6, except that the dependent variables are forward-lagged
by one decade. The dependent variable in columns (1)-(2) is the county’s farm area divided by the county’s total area. The dependent variable in columns (3)-(4) is the county’s area in pastures
divided by the county’s farm area. The dependent variable in columns (5)-(6) is the county’s area in crops divided by the county’s farm area. The dependent variable in columns (7)-(8) is the
county’s area in pastures divided by the county’s farm area
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: The Effects of Electricity on Crop Choices

log Production (tons) log Area (ha) Area/Farmland

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Panel A: Grains

Electricity Infrastructure 0.206 3.752∗∗∗ 0.042 2.155∗∗ 0.012∗ 0.200∗∗∗

[0.230] [1.227] [0.215] [1.071] [0.007] [0.046]
Observations 15,460 15,460 15,460 15,460 15,460 15,460
Mean dep. var. 7.57 7.57 7.54 7.54 0.13 0.13

Panel B: Cassava

Electricity Infrastructure 0.332∗∗∗ 0.494 0.082 −0.426 −0.004 −0.032∗∗

[0.112] [0.863] [0.105] [0.827] [0.004] [0.016]
Observations 15,423 15,423 15,423 15,423 15,423 15,423
Mean dep. var. 4.87 4.87 3.18 3.18 0.01 0.01

Notes: The table shows that electrification has effects on the crop mix. Some crops benefit more from electrification than others. Grains, in particular, benefit from electrification through irriga-
tion, handling and storage, and mecanization in general. Cassava, on the other hand, benefits less from electrification, as it is a typical subsistence crop. Consistent with this, the table shows that
an increase in electricity infrastructure leads to a shit into grains and out of cassava – production and area increase (respectively, decrease) for grains (respectively, cassava). The table makes the
point that the shift from land-intensive towards capital-intensive activities happens also between crops, and not only between cattle grazing and crops. This fact helps explaining why we see
little effect of electricity on the share of farmland allocated to crops in Table 5. Farmers may be switching crops, keeping overall cropland as a fraction of farmland roughly constant.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: The Effects of Electricity on Capital and Inputs

Fraction of Farms
using Irrigation

Number of Tractors
(log)

Expenditures in
Fertilizers Per Hectare

(log)

Expenditures in
Pesticides Per Hectare

(log)

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Electricity Infrastructure 0.02∗∗∗ 0.13∗∗∗ 0.17 2.41∗∗ 0.48∗∗∗ 5.62∗∗∗ 0.24∗∗∗ 3.51∗∗∗

[0.00] [0.05] [0.18] [0.99] [0.11] [1.11] [0.09] [0.85]

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 15,460 15,460 15,460 15,460 15,460 15,460 15,460 15,460
Mean dep. var. 0.06 0.06 4.18 4.18 2.52 2.52 1.83 1.83

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects. The dependent variable in columns (1)-(2) the fraction of farms that use irrigation.
The dependent variable in columns (3)-(4) is number of tractors in a county-year transformed by the inverse hyperbolic sine function. The dependent variable in columns (5)-(6) is the inverse
hyperbolic sine of the dollar amount spent in fertilizers in a county-year. The dependent variable in columns (7)-(8) is the inverse hyperbolic sine of the dollar amount spent in pesticides in a
county-year.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9: Cattle grazing productivity really doesn’t go up with electrification?

Animal Prod./Total Prod. Fraction Cattle ≤ 1 yo Heads Per Hectare Milk per Dairy Cattle (1000
liters)

Fraction of Dairy Cattle

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
OLS IV OLS IV OLS IV OLS IV OLS IV

Electricity Infrastructure 0.0205 −0.333∗∗∗ 0.00337 0.0216 0.106 −0.0728 0.0497 0.561∗∗∗ 0.0100∗∗ 0.0650∗∗

[0.0210] [0.117] [0.00355] [0.0194] [0.190] [0.593] [0.0310] [0.171] [0.00402] [0.0260]

Observations 15,458 15,458 15,448 15,448 15,439 15,438 15,295 15,292 15,448 15,448
Mean dep. var. 0.388 0.388 0.191 0.191 1.130 1.130 0.971 0.971 0.139 0.139

Notes: The table makes the following three points: (i) consistent with the story that electrification increases crop productivity relative to cattle grazing productivity, columns 1-2 show that the
fraction of animal production on overall farm production decreases. (Note that includes poltry production which is likely affected by electricity); (ii) the result in Table 3 is robust to the measure
of cattle grazing productivity we use. In this table, we use two alternative measures of cattle grazing productivity instead of Cattle Production Per Hectare of Pastureland. Columns 3-4 use the
fraction of young herd on overall herd – the idea being that the younger the herd becomes ready for the slaughterhouse, the more productive the farm is (unfourtunately we don’t have the herd’s
age). Columns 5-6 use the stocking ratio – heads of cattle per hectare of pastureland. The IV estimates are not significant, not have meaninful magnitudes when either measure is used. (iii) Dairy
cattle productivity does go up – columns 7-8 show that a 10% increase in electrification increases milk per cow by 60 liters, a 6% increase on the mean. However, this effect is small for it does not
induce producers to change the herd’s composition towards dairy cattle, as shown in columns 9-10.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: The Effects of Electricity on Forestry Production

log Forestry
Production Value

log Production Value
of Wood Products

log Forestry
Production Value Per

Hectare of Forest

Share of Planted
Forests on Farmland

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Electricity Infrastructure -0.371∗∗ 0.129 -0.300 -0.177 -0.383∗∗∗ -2.508 -0.00174 -0.0133
[0.150] [1.874] [0.202] [1.982] [0.140] [1.728] [0.00221] [0.0244]

Observations 15,510 15,510 15,510 15,510 15,462 15,462 15,496 15,496
Mean dep. var. 8.664 8.664 4.309 4.309 0.165 0.165 0.0172 0.0172

Notes: Standard errors clustered at county level in brackets. All specifications use county area weights and include county fixed effects, year fixed effects, and Amazon-year dummy interactions.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: Teting for the presence of credit constraints: Do past rainfall schocks affect
productivity and investments?

Number of Tractors log Production Per Hectare ($)

(1) (2) (3) (4) (5) (6)

Rainfall at t 28.97∗ 23.31 49.27∗∗ 0.0225 0.00647 0.0252
[17.37] [17.25] [19.52] [0.0240] [0.0239] [0.0242]

Rainfall at t-1 24.85∗∗∗ 0.108∗∗∗

[4.813] [0.0156]

Rainfall at t-3 57.67∗∗∗ 0.0717∗∗∗

[16.38] [0.0268]

Rainfall at t-5 113.7∗∗∗ 0.0745∗∗∗

[19.01] [0.0185]

Observations 15,510 15,510 15,510 15,493 15,493 15,493
Mean dep. var. 169.9 169.9 169.9 9.725 9.725 9.725

Notes: Standard errors clustered at county level in brackets. All specifications use county area weights and include county
fixed effects, year fixed effects, and Amazon-year dummy interactions.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 12: The Effects of Electricity on Property Rights

Fraction of Farmland
under Tenancy or

Sharecropping
contracts

Fraction of Farms
under Tenancy or

Sharecropping
contracts

Fraction of Untitled
Farmland

Fraction of Untitled
Farms

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Electricity Infrastructure 0.0240∗∗∗ 0.215∗∗∗ 0.00884 0.0184 0.0593∗∗∗ 0.413∗∗∗ 0.110∗∗∗ 0.786∗∗∗

[0.00861] [0.0793] [0.0115] [0.121] [0.0175] [0.135] [0.0208] [0.233]

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Jungle x year dummies Yes Yes Yes Yes Yes Yes Yes Yes

Observations 15,496 15,496 15,496 15,496 15,496 15,496 15,496 15,496
Mean dep. var. 0.07 0.07 0.12 0.12 0.05 0.05 0.12 0.12

Notes: Standard errors clustered at county level in brackets. All specifications include county fixed effects.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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9 Appendix

9.1 Calculating the effect of electricity on native vegetation

Column (10) of Table 5 gives us the effect of electricity on native vegetation inside
farms. Because we do not have explicit data on native vegetation outside farms, we
need one assumption to be able to back out the effect of electricity on overall native
vegetation. To see this, first note that V(e) = VI(e) + VO(e), where V is total na-
tive vegetation, VI denotes native vegetation inside of farms, and VO denotes native
vegetation outside of farms. Denoting county area by C, we are interested in

∂

∂e
V(e)

C
=

∂

∂e
VI(e)

C
+

∂

∂e
VO(e)

C
(13)

From the numbers in Table 5 we can back out the term ∂
∂e

VI(e)
C using the chain rule.

But since we do not have data on VO
C , we must make one assumption to fully recover

the effect of electricity on overall native vegetation. Note that we can write VO(e) =
k(C − F(e)), that is, native vegetation outside of farms is a fraction k of the county
area (C) that is not in farms (F(e)). Plugging that on the second term on the RHS of
(13),

∂

∂e
VO(e)

C
=

∂

∂e
k(C− F(e))

C
= −k

∂

∂e
F(e)

C
(14)

We have ∂
∂e

F(e)
C from column (2) of Table 5. The only information we do not have

is k, the fraction of the county area outside of farms that is in native vegetation.
Assuming k = 1 (k = 0) gives us a lower (upper) bound on the effect of electricity
on overall native vegetation.

To calculate ∂
∂e

VI(e)
C , note that the IV coefficient in column (10) of Table 5 gives us

∂
∂e

VI(e)
F(e) which, by applying the chain rule, is

∂VI
∂e ·F(e)−VI(e)· ∂F

∂e
F(e)2 . Solving for ∂VI

∂e and
dividing both sides by C yields

∂

∂e
VI

C
=

∂

∂e
VI(e)
F(e)

· F(e)
C

+
VI

F(e)
· ∂

∂e
F(e)

C
(15)

Plugging equations (14) and (15) into (13),

∂

∂e
V(e)

C
=

∂

∂e
VI(e)
F(e)

· F(e)
C

+ (
VI

F(e)
− k) · ∂

∂e
F(e)

C
(16)

If we evaluate this derivative at the sample means, Table 5 gives all the terms on the
RHS of this equation except for k. The effect of electricity on the share of farmland in
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native vegetation, ∂
∂e

VI(e)
F(e) is 047. The fraction of the county area in farmland, F(e)

C is

0.70 for the typical municipality. The fraction of farmland in native vegetation is VI(e)
F(e)

is 0.16 for the typical municipality. Finally, the effect of electricity on farmland 0.13.
Assuming k = 1 gives a lower (upper) bound of 0.22 (0.35). That is, a 10 percentage
point increase in electricity infrastructure increases the share of native vegetation in
the typical county by 2.2 – 3.5 percentage points.

9.2 Model Derivation

Proposition 1. The optimal land use and production choices for farmers, H∗c (Ω), H∗g(Ω), N∗(Ω),
satisfy equations (4)–(7) in section 3.

Proof. The solution to the farmer’s problem is given by the set of first-order condi-
tions

wrt Hc : ΩNFH(H∗c ) = (1 + λ)p (17)

wrt Hg : FH(H∗g) = (1 + λ)p (18)

wrt N : ΩF(H∗c ) = (1 + λ)r (19)

constraint λ(rN∗ + p(H∗c + H∗g)−M) = 0 (20)

where λ is the Lagrange multiplier associated with equation (2).

To prove equation (4), note that equations (17) and (19) imply that N∗ = p
r

F(H∗c )
FH(H∗c )

and

thus ∂N∗
∂H∗c

> 0.

To prove equation (5), note that combining equations (18) and (19) and taking deriva-
tives with respect to Ω gives

r
p

FHH(Hg)
dHg

dΩ
−ΩFHH(Hc)

dHc

dΩ
= FH(Hc) (21)

Furthermore, taking derivatives with respect to Ω in equation (20) and re-arranging
yields (

1 +
r
p

dN
dHc

)dHc

dΩ
= −

dHg

dΩ
(22)

Now, substituting (22) into (21), we can see that dHc/dΩ > 0:

− r
p

FHH(Hg)
(

1 +
r
p

dN
dHc

)dHc

dΩ
−ΩFHH(Hc)

dHc

dΩ
= FH(Hc) (23)
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Electrification therefore increases the productivity of N and induces farmers to in-
vest in more N. N is useful for cultivation, which increases the land allocated to
cultivation. This necessarily leads credit constrained farmers to lower land allocated
to cattle grazing, because a larger share of their budget is spent on cultivation.

The net effect on native vegetation within the farm will depend on farmers’ total land
demand across cultivation and grazing. We define the farmer’s total land demand
as H f = Hc + Hg, equation 22 can be rearranged to:

dH f

dΩ
=

dHc

dΩ
+

dHg

dΩ
= − r

p
dN
dHc

dHc

dΩ
< 0 (24)

The total land demand for all forms of agricultural activities decreases, because farm-
ers have to spend more money on N. In summary, the model predicts that electrifica-
tion (i.e. increasing the productivity of the limited factor) will: (i) increase use of N,
(ii) induce farmers to shift land use from land-intensive cattle grazing to N-intensive
cultivation; and (iii) reduce farmers’ total land demand.

The net effect of electrification on deforestation will depend not only on intensive-
margin changes in land demand within each farm, but also on how the productivity
shock induces extensive-margin changes in the decision to enter the agricultural sec-
tor. To analyze this net effect, we define the total area of native vegetation as

Hv = H −
∫

θ<Π
H f dΓ(θ)

= H − H f Γ(Π). (25)

The total derivative of the forest with respect to electrification displays two opposing
effects:

dHv

dΩ
= −dΓ(Π)

dΠ
dΠ
dΩ

H f −Γ(Π)
dH f

dΩ

= −γ(Π)KF(Ha)H f −Γ(Π)
dH f

dΩ
(26)

< 0 > 0

Proposition 2. The effect of electrification on overall native vegetation defined in equation
(8) is ambiguous.
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Proof. The total derivative of the forest with respect to electrification displays two
opposing effects:

dHv

dΩ
= −

dHc + dHg

dΩ
Γ(θ)− (Hc + Hg)Γ(θ)[

dΠ
dΩ
− dθ

dΩ
] (27)

dHv

dΩ
= −dΓ(Π)

dΠ
dΠ
dΩ

H f −Γ(Π)
dH f

dΩ

= −γ(Π)KF(Ha)H f −Γ(Π)
dH f

dΩ
(28)

< 0 > 0
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