000000000	000
000000 0000	•••
	õõ
	000000000000
	• ••••••••••
	0000000000000000
	••• •••••••
000000	
000000	
00000000	

The Resource Revolution: Meeting the needs of the next 3 billion middle class consumers

McKinsey Global Institute Sustainability and Resource Productivity Practice

October 19, 2011

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

McKinsey&Company

Summary

- The next twenty years will see an 35% increase in resource demand, driven by 3 billion new middle-class consumers
- A resource revolution is needed with **3 main components**
 - 1. Aggressively going after currently available productivity opportunities
 - 2. Enhancing access to resource supply
 - 3. Accelerating the next frontier of resource innovation
- There are 7 priority areas for action to realize this resource revolution
 - 4 areas relate to "classic" market failures e.g., lack of property rights, pricing of externalities, capital market failures, dealing with the public good nature of innovation
 - The other 3 areas go beyond standard market failures, and include the need for new, integrated institutional approaches to resource governance, building awareness of resource-related risks, and shaping mindsets and consumer behaviour

Since the turn of the century, commodity prices have significantly increased, offsetting all of the falls seen since 1900

MGI Commodity Index (years $1999-2001 = 100)^1$

Resource price volatility is at an all time high, with the exception of energy in the 1970s

1 Calculated as the standard deviation of the commodity subindex divided by the average of the subindex over the time frame.

SOURCE: Grilli and Yang; Pfaffenzeller; World Bank; International Monetary Fund; Organisation for Economic Co-operation and Development statistics; UN Food and Agriculture Organization; UN Comtrade; McKinsey analysis

The emergence of 3 billion middle-class consumers will drive future demand

Global middle class¹ Billions of people

SOURCE: Organisation for Economic Co-operation and Development (OECD) Development Centre

Many countries have shown that as incomes rise, demand for resource increases—and a similar curve is likely in China and India

Per capita energy consumption

Million British thermal units/person, 1970–2008

ENERGY EXAMPLE

Demand is projected to grow by 10 to 80 percent across resources

These resource trends pose several risks to global growth and welfare

IMF estimates that a **10 percent** increase in the price of crude reduces global GDP by 0.2%-0.3% in one year

World Bank estimates that recent food price increases drove **44 million people** into poverty

The world is currently subsidizing its resources by at least \$0.9 to **\$1.3 trillion**. At least 8 countries commit 5% or more of their GDP to energy subsidies

Just four countries—Iran, Iraq, Saudi Arabia, and Venezuela—hold almost **50 percent** of known oil reserves

The Stern Review forecasts climate change scenarios which could result in economic losses equivalent to a **20 percent** reduction in current per capita consumption

There are productivity opportunities that could meet 13 to 28 percent of resources demand

However, failing to capture these opportunities could result in a large increase in demand for resources - 175 million to 220 million hectares of additional cropland in the case of agriculture

- 1 Defined as "arable land and permanent crops" by the UN Food and Agriculture Organization.
- 2 As 30–80 percent of biomass input for biofuel production is fed back to livestock feed, the cropland required to produce feed crops would be reduced by about 10 million hectares.
- SOURCE: International Institute for Applied Systems Analysis; UN Food and Agriculture Organization; International Food Policy Research Institute; Intergovernmental Panel on Climate Change; Global Land Degradation Assessment; World Bank; McKinsey Agriculture Initiative; McKinsey analysis

Developing countries account for 70 to 85 percent of the productivity opportunities

% of total productivity opportunity by resource and region

1 Rest of developing Asia includes Central Asia (e.g., Uzbekistan), South Asia (e.g., Bangladesh), Southeast Asia (e.g., Laos), and North Korea. 2 Includes water savings from water-specific levers as well as water savings from improved agricultural productivity.

2 Includes water savings from water-specific levers as well as water savings from impleted agreeded agreededed agreeded agreeded

15 key groups of opportunities represent over 70% of the resource savings

2030 potential savings

1 Based on current prices for energy, steel, and food plus unsubsidized water prices and a shadow cost for carbon

2 Annualised cost of implementation divided by annual total resource benefit

3 Includes feed efficiency, industrial water, air transport, municipal water, steel recycling, waste water reuse, and other industrial energy efficiency

SOURCE: McKinsey Global Institute analysis

Land

These opportunities can be laid out in a integrated resource cost curve

1 Based on current prices for energy, steel, and food plus unsubsidized water prices and a shadow cost for carbon at a discount rate of 4% per annum

SOURCE: McKinsey Global Institute analysis

Achieving the main productivity opportunities will require overcoming a multitude of barriers

Overall feasibility of implementation

2030 potential savings by feasibility

1 Based on current prices for energy, steel, and food plus unsubsidized water prices and a shadow cost for carbon.

2 Includes feed efficiency, industrial water, air transport, municipal water, steel recycling, waste water reuse, and other industrial energy efficiency.

SOURCE: McKinsey analysis

A shift in energy mix and pursuing additional land carbon abatement can be used to close the remaining gap to a 450ppm pathway

SOURCE: McKinsey Global GHG Cost Curve Version 2.1; Team analysis

Power mix shifts significantly in the climate change case, while mix assumed constant in productivity response

Share of global power production (TWh); Percent

Current state (2010)	e (2010) Supply expansion			Productivity response ¹			Climate change response		
100% = 21,186	100% =	28,114	34,776	100% =	25,471	29,363	100% =	25,471	29,363
								25	13
40		42	43		42	43			14
									6
								24	18
22		21	21		21	21		_ <mark>0</mark> _2_	
					2			15	15
-0 <mark>-5</mark> 13		_03_ 12	_0_2_ 11		-03- 12	_0_2_ 11		16	17
17		15	14		15	14		9	9
20 2	_	<mark>_1_4</mark> _	2 <mark>3 1</mark>		<mark>-1</mark> -4	2 <mark>3 1</mark>		<u> </u>	7
<u>–</u> 2010		2020	2030		2020	2030		2020	2030

1 Production mix is based on total electricity demand and scaled in proportion to the BAU production mix

Capital investment will increase significantly under all three cases

Average annual capital expenditure requirements¹; USD billions; 2010-2030; 2010 dollars

1 Does not include capex for BAU productivity improvements; includes impact of Capex flareups due to supply constraints

Price signals drive productivity: The 40 percent variation in engine efficiency across many G-20 countries relates closely to the cost of fuel

SOURCE: McKinsey analysis

There are 7 priority actions to capture this resource revolution

Address classic "market failures"	Ensure competitive investor returns	Address property rights and agency issues	Support access to capital	Accelerate and deepen innovation systems				
	Build awareness of risks							
Address "critical enablers"	Create efficient and integrated institutional approaches							
	Develop skills and address mindsets							

There is a need to tackle these issues in a holistic way: Agriculture example

